LEARNING OUTCOMES BASED CURRICULUM FRAME WORK (LOCF) FOR POSTGRADUATE PROGRAMMES

(With effect from 2022-23)

MSc Zoology Department of Advanced Zoology and Biotechnology

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

PREFACE

A high priority task in the context of future education development agenda in India is fostering quality higher education. Improvement of quality of higher education is considered critical for enabling effective participation of young people in knowledge production, participation in the knowledge economy, improving national competitiveness in a globalized world and for equipping young people with skills relevant for global and national standards and enhancing the opportunities or social mobility. Sustained initiatives are required for institutionalizing an outcome-oriented higher education system and enhancing employability of graduates through curriculum reform based on a learning outcomes-based curriculum framework, improving/upgrading academic resources and learning environment, raising the quality of teaching and research across all higher education institutions; technology use and integration to improve teaching-learning processes and reach a larger body of students through alternative learning modes such as open and distance learning modes and use of MOOCs.

UGC, under its Quality Mandate, has resolved to revise the curriculum based on Learning Outcomes which is an endeavour towards fostering quality higher education in India. The Learning Outcomes-based Curriculum Framework (LOCF) works towards a more holistic experience for the students, while focusing not just on knowledge delivery in higher education but also on the application of knowledge through field and lab work and emphasises on application of knowledge to real life experiences. Besides this, students will attain various 21st century skills like critical thinking, problem solving, analytic reasoning, cognitive skills, self-directed learning etc (Excerpts of UGC document on LOCF, 16th January, 2020).

In response to the quality mandate of the UGC, the Department of Advanced Zoology and Biotechnology, Loyola College, Chennai has attempted to revamp the PG Zoology curriculum to cater to the growing needs of the students and the industry and to keep phase with the emerging trends in the field of Life Sciences. In the proposed curriculum, while the Major Core courses focus on the knowledge expansion of the subject discipline, the Subject elective, Inter-disciplinary, Cross Disciplinary and Value Added courses focus on the emerging trends in the field of applied biology aimed at skill enhancement and research output. We sincerely acknowledge the valuable inputs of the reviewers of the syllabi **Dr. B. Meena**, Associate Professor, Presidency College, Chennai, **Dr. J. J. Arockia Rita**, Assistant Professor, QMGC, Chennai and **Dr. S. Nandini**, Assistant Professor, QMGC, Chennai.

We acknowledge the contributions of the following members of the Board of Studies **Dr. S. Janarthanan** (University Nominee-PG Board), **Dr. S. Elumalai** (University Nominee-UG-Board), **Dr. S. Arivoli** (Subject Expert), **Dr. M. Akilan** (Subject Expert), **Dr. J. J. Arockia Rita** (Alumna), **Dr. Felix Paul Joe** (Industry Representative), **Ms. Monalisa Sahu** and **Mr. Pranjal Sharma** (Student representatives).

S. No	Details	Page
1	Vision and Mission of Loyola College	1
2	Vision and Mission the Department	1
3	Programme Educational Objectives (PEOs)	2
4	Programme Outcomes (POs)	3
5	Programme Specific Outcomes (PSOs)	4
6	Correlation Rubrics	5
7	Mapping of PEOs with Vision and Mission	5
8	Mapping of POs with PEOs	5
9	Mapping of PSOs with PEOs	5
10	Mapping of PSOs with POs	5
11	PG Overall Course Structure	6
12	MSc Zoology Restructured LOCF Curriculum	8
	Course Descriptors (Major Core)	
13	PZO1MC01 Systematics and Diversity of Animals	9
14	PZO1MC02 Advanced Developmental Biology	14
15	PZO1MC03 Ethology and Evolutionary Biology	19
16	PZO1MC04 Community and Population Ecology	23
17	PZO1MC05 Entomology and Vector Biology	27
18	PZO1MC06 Diversity of Animals, Embryology and Ecology Lab Course	31
19	PZO2MC01 Biophysics, Biochemistry and Bioenergetics	35
20	PZO2MC02 Research Methodology and Biostatistics	39
21	PZO2MC03 Inheritance Biology	43
22	PZO2MC04 Cellular Organization and Molecular Processes	47
23	PZO2MC05 Biophysics, Biochemistry and Cytogenetics Lab Course	51
24	PZO3MC01 Comparative Animal Physiology	54
25	PZO3MC02 Immunology, Microbiology and Epidemiology	58
26	PZO3MC03 Toxicology, Pharmacology and Bioethics	62
27	PZO3MC04 Computational Biology	66
28	PZO3MC05 Animal Physiology, Microbiology and Immunology Lab Course	70
29	PZO4MC01 Methods in Biology	74
30	PZO4MC02 Genetic Engineering	78
31	PZO4MC03 Methods in Molecular Biology Lab Course	81

CONTENTS

	Course Descriptors (Subject Elective)	
32	PZO2SE01 Remote Sensing and Bioresource Management	85
33	PZO2SE02 Endocrinology and Neuroscience	89
34	PZO2SE03 Breeding in Plants and Animals	94
35	PZO2SE04 Nanotechnology and Synthetic Biology	98
36	PZO2SE05 Wildlife Conservation and Management	101
37	PZO3SE01 Bioremediation, Phytoremediation and Biosensors	106
38	PZO3SE02 Fishery Science	110
39	PZO3SE03 Environmental Impact Analysis	114
40	PZO3SE04 Intellectual Property Rights	119
41	PZO3SE05 Histochemistry and clinical Lab Technology Lab Course	123
	Course Descriptors (Inter Disciplinary)	
42	PZO3ID01 System Physiology - Plant	127
	Course Descriptors (Cross Disciplinary)	
43	PZO2CD01 Biogeography and Conservation Biology	130
44	PZO2CD02 Forensic Biology	135
	Course Descriptors (Value Added)	
45	PZO3VA01 Apiculture, Sericulture and Lac culture	139
46	PZO3VA02 Freshwater and Brackish water Aquaculture	144
	LOCF Based Direct Assessments	
47	CL and CO based CIA Question Paper Format (PG)	149
48	Sample CIA Question Paper	150
49	CL and CO based End of Semester Examination Question Paper Format (PG)	151
50	Distribution of Questions and Marks for Question Paper Setting (PG)	152
51	Total Marks Distribution of Direct Assessments based on CL and CO (PG)	152
52	Sample End of Semester Question Paper	153

VISION AND MISSION OF LOYOLA COLLEGE

VISION

Towards holistic formation of youth, grounded in excellence, through accompaniment to serve the humanity.

MISSION

- To provide inclusive education through an integral and holistic formative pedagogy.
- To promote skills that prepare them for the future.
- To kindle in young minds the spirit of social and environmental justice with a blendof academic excellence and empathy.
- To stimulate critical and conscientious scholarship leading to meaningful and innovative human capital.

CORE VALUES

- Cura Personalis
- Pursuit of Excellence
- Moral Rectitude
- Social Equity
- Fostering solidarity
- Global Vision
- Spiritual Quotient

VISION AND MISSION OF THE DEPARTMENT

VISION

To offer quality science education to inculcate respect for nature and human life and to promote scientific practices based on strong ethical principles.

MISSION

To introduce modern trends in life sciences emphasizing conservation.

To develop and hone skills of students to meet the local and global needs.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) (School of Life Sciences)

PEO1	Academic Excellence, Core Competency and Lifelong learning To achieve academic excellence through teaching and research by building core competencies in the realm of Life Sciences for lifelong learning.
PEO 2	Globally Relevant Curriculum, Learning Environment To provide a conducive learning environment to the stakeholders and consistently innovate and upgrade the curriculum by employing modern instructional methodologies to make Life Sciences teaching and learning relevant to the global context.
PEO3	Effective Communication, Teamwork and Leadership skills To demonstrate team-building skills and leadership qualities for effective communication and collaboration through scientific research and publications and enhance the spirit of teamwork and leadership skills.
PEO4	Environmental sustainability, social responsibility and solidarity To instil values in environmental sustainability and social responsibility to become socially responsible scientists.
PEO5	Technical and professional skills, Entrepreneurship and Empowerment To equip students with technical and professional skills in Life Sciences to be empowered citizens through entrepreneurial ventures and contribute toward national priorities.
PEO6	Equity, Equality, Gender sensitization and Scientific temperament To create a campus culture that prepares the students with a strong scientific temperament who are proactive to the needs of the disadvantaged sections of society and demonstrate the principles of equity, equality, and gender sensitization.

PROGRAMME OUTCOMES (POs) (School of Life sciences)

PO1	Disciplinary knowledge Students will apply the knowledge acquired in the subject domain and become skilled professionals with a competency that matches global standards.
PO2	Communication Skills, Teamwork and leadership qualities Students will be able to pursue research in Life Sciences and offer solutions to environmental issues and conservation strategies through scientific practices, communication, teamwork and exemplary leadership.
PO3	Critical thinking, problem-solving and analytical reasoning Students will demonstrate skills in analytical reasoning, problem-solving, scientific understanding, and reflective thinking in the frontiers of life sciences.
PO4	Research-related skills and Scientific reasoning Students will acquire skills for scientific research to update and expand the existing knowledge and make conceptual contributions to theoretical biology and create workable prototypes for applied biology.
PO5	Skill development, entrepreneurship and lifelong learning Students will be able to apply the skills learned during the study for lifelong learning to be an entrepreneur, academics or industrialist.
PO6	Environment and ethical awareness Students will be ethically grounded individuals who will understand and contextualize environmental and ethical issues and contribute toward the betterment of the environment to achieve sustainable growth.
PO7	Digital literacy and self-directed learning Students will engage in self-paced and self-directed lifelong learning through digital literacy for personal development, professional accomplishment and the welfare of society.

PROGRAMME SPECIFIC OUTCOMES (PSOs) (Department of Advanced Zoology and Biotechnology)

PSO1	Students will be able to get exposed to emerging trends in the subject domain and acquire up to date knowledge on theoretical and applied biology.
PSO2	Students will be able to understand and enrich their knowledge of the diversity, systematic position, community ecology and intra and inter species interaction of Kingdom Animalia.
PSO3	Students will be able to apply the principles of biophysics, biochemistry and bioenergetics in the functioning of an ecosystem and appreciate the interaction of biotic and abiotic factors in the sustenance of life and life-supporting systems.
PSO4	Students will be able to expand their perception of the role of principles of genetics, evolution, embryology and behaviour in the stabilization, inheritance and acquisition of desirable traits in the lives of animals.
PSO5	Students will be able to broaden their understanding of the role of beneficial and harmful insects in areas concerning human welfare like health and hygiene, epidemiology, disease diagnosis and prevention, food production and economic prosperity.
PSO6	Students will be able to enrich their knowledge in the emerging multidisciplinary areas of life sciences like molecular biology, genetic engineering, computational biology, remote sensing, physiology, immunology, gene manipulation techniques, biotechnology, toxicology and drug discovery that offer ample scope for better career options.
PSO7	Students will be able to perform laboratory experiments, undertake research projects, and field and institutional visits to gain hands-on experience and industry exposure to hone their skills and enhance their expertise in emerging areas of life sciences and contribute toward national priorities as entrepreneurs.

Correlation Rubrics

High	Moderate	Low	No Correlation
3	2	1	0

Mapping of PEOs with Vision and Mission

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
Vision	3	3	3	3	3	3
Mission	3	3	3	3	3	3

Mapping of POs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PO1	3	2	3	3	3	2
PO2	3	3	3	3	3	2
PO3	3	3	3	3	3	3
PO4	3	3	3	3	3	3
PO5	3	3	3	3	3	3
PO6	3	3	2	3	3	2
PO7	3	3	3	3	3	3

Mapping of PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PSO1	3	3	3	3	3	3
PSO2	3	3	3	3	3	2
PSO3	3	3	3	3	3	3
PSO4	3	3	3	3	3	3
PSO5	3	3	3	3	3	3
PSO6	3	3	3	3	3	3
PSO7	3	3	3	3	3	3

Mapping of PSOs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
PSO1	3	3	3	3	3	3	3
PSO2	3	3	3	3	3	3	3
PSO3	3	3	3	3	3	3	3
PSO4	3	3	3	3	3	3	3
PSO5	3	3	3	3	3	3	3
PSO6	3	3	3	3	3	3	3
PSO7	3	3	3	3	3	3	3

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI DEPARTMENT OF ADVANCED ZOOLOGY AND BIOTECHNOLOGY

(2021 - Restructured Curriculum)

OVERALL COURSE STRUCTURE (MSc Zoology)

Sem	Code	Course Title	T/L	Category	Hrs	Cr
Ι	PZO1MC01	Systematics and Diversity of Animals	Т	MC	4	5
Ι	PZO1MC02	Advanced Developmental Biology	Т	MC	5	5
Ι	PZO1MC03	Ethology and Evolutionary Biology	Т	MC	5	5
Ι	PZO1MC04	Community and Population Ecology	Т	MC	5	5
Ι	PZO1MC05	Entomology and Vector Biology	Т	MC	5	5
Ι	PZO1MC06	Diversity of Animals, Embryology and Ecology Lab Course	L	MC	6	3
II	PZO2MC01	Biophysics, Biochemistry and Bioenergetics	Т	MC	4	3
II	PZO2MC02	Research Methodology and Biostatistics	Т	MC	4	3
II	PZO2MC03	Inheritance Biology	Т	MC	5	5
II	PZO2MC04	Cellular Organization and Molecular Processes	Т	MC	4	4
II	PZO2MC05	Biophysics, Biochemistry and Cytogenetics Lab Course	L	MC	6	3
II		Based on students' preference two courses will be offered	Т	SE	4	2
II		MOOCs# (Outside class hours, additional credits)	Т	МО	2	2
II		Life Skills [#]	Т	LS	2	1
II		Cross Disciplinary (between schools, purely internal)	Т	CD	3	1
II		Summer Internship (3 to 4 weeks) [#]	-	SI	-	1
III	PZO3MC01	Comparative Animal Physiology	Т	MC	4	4
III	PZO3MC02	Immunology, Microbiology and Epidemiology	Т	MC	4	4
III	PZO3MC03	Toxicology, Pharmacology and Bioethics	Т	MC	3	4
III	PZO3MC04	Computational Biology	Т	MC	3	3
III	PZO3MC05	Animal Physiology, Microbiology and Immunology Lab Course	L	MC	6	3
III		Based on students' preference two courses will be offered	Т	SE	4	2
III		System Physiology - Plant	Т	ID	6	3
III		Soft Skills [#]	Т	SK	2	1
III		Value Added Courses (from other Institutions) [#]	Т	VA	2	1
III		LEAP [#]	-	SL	2	1
IV	PZO4MC01	Methods in Biology	Т	MC	5	5
IV	PZO4MC02	Genetic Engineering	Т	MC	4	4
IV	PZO4MC03	Methods in Molecular Biology Lab Course	L	MC	6	6
IV	PZO4MC04	Project and Dissertation	-	PD	15	5
					130 *	99

* 120 Contact hours and 10 Outside Class

Major Elective (ME)

Sem	Code	Course Title	T/L	Category	Hrs	Cr
II	PZO2SE01	Remote Sensing and Bioresource Management	Т	SE	4	2
II	PZO2SE02	Endocrinology and Neuroscience	Т	SE	4	2
II	PZO2SE03	Breeding in Plants and Animals	Т	SE	4	2
II	PZO2SE04	Nanotechnology and Synthetic Biology	Т	SE	4	2
II	PZO2SE05	Wildlife Conservation and Management	Т	SE	4	2
III	PZO3SE01	Bioremediation, Phytoremediation and Biosensors	Т	SE	4	2
III	PZO3SE02	Fishery Science	Т	SE	4	2
III	PZO3SE03	Environmental Impact analysis	Т	SE	4	2
III	PZO3SE04	Intellectual Property Rights	Т	SE	4	2
III	PZO3SE05	Histochemistry and Clinical Lab Technology Lab Course	Т	SE	4	2

Courses offered to other Departments

Sem	Code	Course title	T/L	Category	Hrs	Cr
II	PZO2CD01	Biogeography and Conservation Biology	Т	CD	3	1
II	PZO2CD02	Forensic Biology	Т	CD	3	1
III	PZO3VA01	Apiculture, Sericulture and Lac culture	Т	VA	2	1
III	PZO3VA02	Freshwater and Brackish water Aquaculture	Т	VA	2	1

MC – Major Core; ME-Major Elective; ID-Inter-Disciplinary; MO-MOOC; LS-Life Skills; SK- Soft Skills; CD-Cross Disciplinary; VA- Value Added; SI-Summer Internship; SL-Service Learning; PJ-Project

PART	SEMESTER I	SEMESTER II	SEMESTER III	SEMESTER IV
MC	Systematics and Diversity of Animals	Biophysics, Biochemistry and	Comparative Animal Physiology	Methods in Biology
	(4h/5c)	Bioenergetics (4h/3c)	(4h/4c)	(5h/5c)
	Advanced Developmental Biology	Research Methodology and	Immunology, Microbiology and	Genetic Engineering
	(5h/5c)	Biostatistics (4h/3c)	Epidemiology (4h/4c)	(4h/4c)
	Ethology and Evolutionary Biology	Inheritance Biology	Toxicology, Pharmacology and	Methods in Molecular Biology
	(5h/5c)	(5h/5c)	Bioethics (3h/4c)	Lab Course (6h/6c)
	Community and Population Ecology	Cellular Organization and Molecular	Computational Biology	
	(5h/5c)	Processes (4h/4c)	(3h/3c)	
	Entomology and Vector Biology	Biophysics, Biochemistry and	Animal Physiology, Microbiology and	
	(5h/5c)	Cytogenetics Lab Course (6h/3c)	Immunology Lab Course (6h/3c)	
	Diversity of Animals, Embryology and			
	Ecology Lab Course (6h/3c)			
ME		(4h/2c)*	(4h/2c) *	
ID			System Physiology - Plant (6h/3c)	
			(within school)	
MOOCs		2h(2c) (Outside Class Hours, additional		
		Credits)		
LS		2h(1c) (Outside Class Hours)		
SK			2h/1c (Outside Class Hours)	
CD		3h(1c) (Between schools, purely internal)		
VA			2h(1c) (Outside Class Hours)	
SI		3 to 4 weeks (1c) (Outside Class Hours)		
SL			LEAP (2h/1c) (Outside Class Hours)	
PJ				(15h/5c)
Hr/c	30h (28c)	30h (23c+2c)	30h (26c)	30h (20c)

M. Sc Zoology Restructured LOCF Curriculum (effective from June, 2022)

MC – Major Core; ME-Major Elective; ID-Inter-Disciplinary; MO-MOOC; LS-Life Skills; SK- Soft Skills; CD-Cross Disciplinary;

VA- Value Added; SI-Summer Internship; SL-Service Learning; PJ-Project

* Based on students' preference two courses will be offered from the pool of 10.

Course Code	PZO1MC01
Course Title	Systematics and Diversity of Animals
Credits	05
Hours/Week	04
Category	Major Core (MC) - Theory
Semester	Ι
Regulation	2022

Course Overview

- 1. The course highlights on a variety of biodiversity ranging from protozoans to metazoans and different kinds of taxonomic keys, their merits.
- 2. This course will challenge students to impart, analyze and apply skills to their readings in Basic concept of Biosystematics and animal taxonomy.
- 3. This course gives a broad overview of the foundations and Modern concepts and recent trend.
- 4. Course module is designed to learn diversity and relationships in animal world for biodiversity management.
- 5. After successful completion of the course the candidate should be able to design and comprehend different variety of organisms.

Course Objectives

- 1. To learn and understand the concepts regarding animal diversity to appreciate the variability in relation to their morphology, anatomy and behaviour among different animals.
- 2. To give a thorough understanding in the principles and practice of systematics, This will provide them ample opportunities to explore different career avenues
- 3. To help students acquire an in-depth knowledge on the diversity and relationships in animal world.
- 4. To develop an holistic appreciation on the phylogeny and adaptations in animals
- 5. The course has been designed to provide in-depth knowledge of animal systematics and diversity ensuring the inculcation of employment skills so that students can make a career and become an entrepreneur in diverse fields of aquatic biology.

Prerequisites Basic knowledge on Molecular Biology, Cell Biology and Biotechnology

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive
				Level
Ι	Biological Classification	10	CO1	K1, K2, K3,
	Hierarchy, Binomial nomenclature, Trinomial		CO2	K4, K5, K6
	nomenclature, Rules of nomenclature, Concept of Five		CO3	
	kingdom Basis of Classification- Grade of organization,		CO4	
	Symmetry, Coelom, Embryogeny, segmentation. Three		CO5	
	Domain Concept in Systematics, two, five and six			
	kingdom classification. Concept of species-taxonomic			
	diversity within species. Molecular Phylogeny - specific			
	Proteins, DNA barcoding and 16S RNA, Phylogenetic			
	trees, Concepts and Techniques in Systematics.			
II	Taxonomy and Classification	12	CO1	K1, K2, K3,
	Microtaxonomy: species concepts; typological species		CO2	K4, K5, K6
	concept, nominalistic species concept, biological species		CO3	
	concept and evolutionary species concept. Polytypic and		CO4	
	monotypic species; species category; subspecies, other		CO5	
	infra-specific categories and intra-population variants.			
	Theories and practice of biological classification: basic			
	principles of classification: The three schools of macro			
	taxonomy: Phenetics, cladistics and phylogenetics and			
	their comparison. Modern concepts and recent trends:			
	chemotaxonomy, cytotaxonomy, serotaxonomy and			
	molecular taxonomy, Importance of application of			
	Systematics in biology, Taxonomy vis-a-vis biodiversity			
	conservation.			
III	Lower Metazoans	12	CO1	K1, K2, K3,
	Porifera, Cnidaria-Polymorphism, Ctenophora,		CO2	K4, K5, K6
	Acoelomata, Placozoa, Mesozoa and Pseudocoelomata		CO3	
	evolutionary relationships and adaptive modifications		CO4	
	only. Phylogenetic position of Molluscs, Adaptive		CO5	
	Radiation in Molluscs and Annelids. Phylogeny of			
	Arthropod-Monophyly and Polyphyly, Reasons for the			
	success of Arthropods. Major classes under Arthropoda			
	and adaptive radiation. Sipuncula, Echiura, Phoronida,			

	Brachipoda, Onychophora and Chaetognatha- Phylogeny				
	only. Echinoderms: Classification and adaptive radiation.				
IV	Ancestry of Chordates	13	CO1	K1, K2, K3,	
	Theories and origin of chordates, Hemichordates: Position		CO2	K4, K5, K6	
	in the animal kingdom, phylogeny and evolutionary		CO3		
	significance, Cephalochordates and Urochordates.		CO4		
	Vertebrate Phylogeny-Agnatha, Ostracoderms and		CO5		
	Gnathostomes-Placoderms, Acanthodians,				
	Chondrichthyes and Osteichthyes. Structural and				
	Functional adaptations of fishes.				
V	Terrestrial Vertebrates, Birds and Mammals	13	CO1	K1, K2, K3,	
	Tetrapod phylogeny - modern Amphibians, diversity,		CO2	K4, K5, K6	
	distribution, status and threats. Reptiles - origin and		CO3		
	adaptive radiation. Skull of reptiles and its importance in		CO4		
	biosystematics. Mesozoic world of reptiles and extinction.		CO5		
	Origin of birds and mammals, Structural and functional				
	modifications for aerial life. Orders under class Aves.				
	Class Mammalia: Prototheria, Metatheria and Eutheria.				
	Phylogeny of Mammalian orders. Adaptive radiation in				
	mammals.				
Sugge	sted Readings				
1.	Alfred, J. R. B., & Ramakrishna. (2004). Collection, press	ervatio	n and ide	entification of	
	animals. Zoological Survey of India Publications.				
2.	Anderson, T. A. (2001). Invertebrate zoology (2nd ed). Ox	ford U	niversity	Press.	
3.	Barnes, R. D. (1982). Invertebrate zoology (6th ed).				
4.	Barrington, E. J. W. (1979). Invertebrate structure and fund	ctions ((2nd ed)	E.L.B.S. and	
	Nelson, Boradale, L. A., & Potts, E. A. (1961). Invertebra	tes: A	manual	for the use of	
	students. Asia publishing home.				
5.	Benton, M. J. (2005). Vertebrate paleontology (3rd	ed).	Blackwe	ll Publishing	
	Com.Oxford,UK.				
6.	Boolootian, R. A., & Stiles, K. A. (1981). College zoolog	gy (10t	h ed) p.	2. Macmillan	
	Publishing, Co., Inc. New York.		· •		
7.	David, M. H., Moritz, C., & Barbara, K. M. (1996). Mo	lecular	system	atics. Sinauer	
	Associates, Inc.		-		
8.	Edward, R. E., Fox, R. S., & Barnes, R. D. (2006). Invert	ebrate	zoology	: A functional	
	evolutionary approach. Cole. Singapore.				
	· • •				

- 9. Hickman, C., Roberts, L. S., Keen, S. L., Larson, A., & Eisenhour, D. (2018). Animal diversity. McGraw-Hill.
- 10. Holland, P. (2011). The animal kingdom: A very short introduction. Oxford University Press.
- 11. Hyman, L. H. (1992). The Invertebrates: Protozoa Through Ctenophora. India: International Books & Periodicals Supply Service.
- 12. Hyman, L. H. (1940). The Invertebrates: Platyhelminthes and Rhynchocolea -- The Acoelomate Bilateria. United Kingdom: McGraw-Hill.
- 13. Kapoor, V. C. Theory and practice of animal taxonomy. Oxford & IBH Publishing, Co.
- 14. Kardong, K. V. (2006). Vertebrates: Comparative anatomy, function, evolution (4th ed). McGraw-Hill.
- 15. Margulis, L., & Chapman, M. J. (2001). Kingdoms and domains: An illustrated guide to the phyla of life on earth (4th ed). W. H. Freeman and Company.
- 16. Mayr, E. (1997). This is Biology: The Science of Living world. Harvard University PressLtd.
- Mayr, E., & Ashlock, P. D. (1991). Principles of systematic zoology (2nd ed). McGraw-Hill Int.
- 18. Parker, T. J., & Haswell, W. A. Text book of Zoology. Macmillan Company.
- 19. Romer, A. S., & Parsons, T. S. (1985). The vertebrate body (6th ed). Saunders.
- 20. Simpson, G. G. (1961). Principles of Animal Taxonomy. United Kingdom: Columbia University Press.
- 21. Hall, B., Hallgrimsson, B. (2011). Strickberger's Evolution. (n.p.): Jones & Bartlett Learning.
- 22. Winston, J. E. (2000). Describing species: Practical Taxonomic Procedures for Biologists. Columbia University Press.

Web Resources

- 1. https://www.zsi.gov.in/App/index.aspx
- 2. https://moef.gov.in/en/
- 3. http://nbaindia.org/
- 4. https://www.mapress.com/zt/
- 5. https://www.bnhs.org/
- 6. https://wwf.panda.org/
- 7. https://cites.org/eng
- 8. https://indiabiodiversity.org/

Prepared by : Dr. K. Thresia Mathews

COs	CO Description	Cognitive Level
C01	To understand the concepts of taxonomy and biodiversity.	K1, K2
CO2	To compare the morphology, anatomy and behaviour of animals belonging to different levels in taxonomical hierarchy.	К3
CO3	To analyze and categorize organisms using advanced molecular taxonomical techniques.	K4
CO4	To explain structural and functional adaptations of animals belonging to different categories.	K5
CO5	To design research plans to monitor biodiversity and formulate keys for taxonomical identification of animals.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO1MC02
Course Title	Advanced Developmental Biology
Credits	05
Hours/Week	05
Category	Major core (MC) – Theory
Semester	Ι
Regulation	2022

Course Overview

- 1. Developmental biology is an expanding field that integrates molecular biology, genetics, cell biology, ecology and evolution.
- 2. This course concentrates on the development and growth of complex organisms. In which major events in early developmental stages are examined with basic genetics and molecular approach.
- 3. This course aims to provide a broad aspect of embryology with special emphasis on both classical experiments and modern molecular and genetic techniques. And that can be examined and compared with several model organisms.
- 4. This course explores the expression of genes and proteins in controlling the behaviour of cells in the processes of differentiation, cell interaction, morphogenesis and growth and also provides a better understanding of early embryonic defects.
- 5. The techniques in experimental embryology include stem cells, transgenic cells in-vitro fertilization and cryopreservation, etc., highlighting the relevance of human embryology to stem cell therapy, gene therapy, transgenic animals, and fertility studies.

Course Objectives

- 1. To understand the basic concepts of communication of cells in promoting the development of multicellular organisms.
- 2. To understand the interaction of biomolecules in cell differentiation and morphogenesis.
- 3. To understand how the expression of genes and proteins involved in normal development and its errors leads to congenital defects.
- 4. To understand the importance of techniques in experimental embryology for diagnosis and treatment.

PrerequisitesBasic knowledge in cell biology, genetics and embryology

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive Level
Ι	Basic Concepts of Development	15	CO1	K1, K2, K3,
	Principles and terms in developmental biology;	10	CO2	K4, K5. K6
	Potency, specification; determination and		CO3	7 - · · -
	differentiation; morphogen and morphogenetic		CO4	
	gradients; induction, competence; Cell fate and		CO5	
	cell lineages, mechanisms of developmental			
	commitment; genomic equivalence and the			
	cytoplasmic determinants; maintenance of			
	differentiation pattern formation, compartments			
	and segmentation; model organisms. cellular and			
	microsurgical techniques.			
II	Early Embryonic Development	15	CO1	K1, K2, K3,
	Early animal development by single-cell		CO2	K4, K5, K6
	specification; Gametogenesis; Gamete		CO3	
	recognition, contact, polyspermy prevention and		CO4	
	Fertilization in animals; Cleavage, blastula and		CO5	
	Gastrulation and formation of germ layers.			
	General principles of cell-cell communication in			
	development; Genes in development; Role of			
	maternal genes, patterning of early embryo by			
	zygotic genes; Epigenetic regulation of			
	development; Chromatin and DNA Methylation;			
	Histone modification; dosage compensation;			
	imprinting; Developmental genetic defects.			
III	Morphogenesis and Organogenesis	15	CO1	K1, K2, K3,
	Neural tube formation and cell migration; Axis		CO2	K4, K5, K6
	and pattern formation in <i>Caenorhabditis elegans</i> ,		CO3	
	Drosophila, Amphibia and chick; Genetics of axis		CO4	
	formation in <i>Drosophila;</i> homeobox genes in		CO5	
	patterning; Vulva formation in C. elegans; Hox			
	genes in vertebrates; epithelial - mesenchyme			
	interaction. Pattern formation and morphogenesis			
	in Vertebrate Limb development. Development of			
	vertebrate eye; Differentiation of neurons;			

	Prenatal diagnosis; stem cell biology and applications			
IV	Post Embryonic Development	15	CO1 CO2	K1, K2, K3,
	Growth, cell proliferation, growth hormones; aging: genes involved in alteration in the timing of		CO2 CO3	K4, K5,K6
	senescence; Role of cell death in development;		CO4	
	Metamorphosis in insects and amphibians;		CO5	
	Regeneration in invertebrates and vertebrates;			
	Medical advances in tissue regeneration;			
	Differential RNA processing, inborn errors of			
	translation; Environmental regulation of normal			
	development; Teratogenesis.			
V	Human Embryonic Development and	15	CO1	K1, K2, K3,
	Experimental Embryology		CO2	K4, K5, K6
	Experimental Embryology Differentiation of sex and development of male		CO2 CO3	K4, K5, K6
			CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders		CO3	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis.		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development;		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development; Foetal and maternal relationship; Common causes		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development; Foetal and maternal relationship; Common causes of male and female infertility – anatomical,		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development; Foetal and maternal relationship; Common causes of male and female infertility – anatomical, hormonal, genetic. Assisted Reproductive		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development; Foetal and maternal relationship; Common causes of male and female infertility – anatomical, hormonal, genetic. Assisted Reproductive Technology in humans; ethical implications of		CO3 CO4	K4, K5, K6
	Differentiation of sex and development of male and female reproductive systems; Regulation of hormones in ovulation and pregnancy; Disorders of Folliculogenesis and ovulation: Polycystic Ovary Syndrome; Abnormal spermatogenesis. Embryonic adaptation and the development; Foetal and maternal relationship; Common causes of male and female infertility – anatomical, hormonal, genetic. Assisted Reproductive		CO3 CO4	K4, K5, K6

Suggested Readings

- Balinsky, B. I., (2012). Introduction to Embryology (5th ed). CBS College Publishers, New York, 782pp.
- 2. Berrill, N.J., (1980). Developmental Biology, Tata Mc-Graw Hill Publications, New Delhi, 535pp.
- 3. Gilbert. S. F., (2017). Developmental Biology (11th ed.). INC Publishers, USA, 810pp.
- 4. Gerhart, J. & Marc Kirschner (1997). Cells, Embryos and Evolution. Whiley Blackwell Science. 656pp.
- 5. Hopper, A.F. & Hart, N.H. (2016). Foundations of Animal Development. Oxford University Press, Oxford.
- Kalthoff, (2000). Analysis of Biological Development, (2nd ed.). McGraw-Hill Science, New Delhi, India. 816pp.
- 7. Lewis Wolpert, (2012). Principles of Development. Oxford University Press, oxford. 656pp.
- 8. Mari-Beffa, M., & Knight, J. (2005). Key Experiments in Practical Developmental Biology. Cambridge University Press, UK, 404pp.
- 9. Saunders, J.W. (1982). Developmental Biology-Patterns, Principles and Problems. Macmillan Publishing Co., New York. 640pp.
- Slack, J.M.W. (2012). Essential Developmental Biology (3rd ed.).Wily-Blackwell Publications, USA, 496pp.
- 11. Subramoniam, T. (2011). Molecular Developmental Biology (2nd ed.). Narosa Publishers, India, 364pp.
- Twyman, R. M. (2003). Developmental biology (1st ed). Viva Books publisher, New Delhi. 452pp.
- 13. Tyler, M.S. (2000). Developmental Biology A Guide for Experimental Study, Sunderland, MA, 208pp.
- 14. Werner A. Muller, (2005). Developmental Biology. Springer Verlag, New yok. 382pp.
- 15. Wilt, F.H. & Wessel, N.K. (1967). Methods in Developmental Biology, Thomas Y Crowell, New York.

Web Resources:

- 1. https://courses.lumenlearning.com/suny-wmopen-biology2/
- 2. https://thebiologynotes.com/introduction-to-embryology/
- 3. https://bit.ly/37Lfpkn
- 4. https://medlineplus.gov/assistedreproductivetechnology.htmll
- 5. https://www.sdbonline.org
- 6. https://www.easybiologyclass.com/

- 7. https://www.ccmb.res.in/
- 8. https://virtualhumanembryo.lsuhsc.edu/
- 9. https://www.3dembryoatlas.com/
- 10. https://www.museumfuernaturkunde.berlin/en/science/embryology-collection

Prepared by : Dr. V. Jelin

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive
		Level
CO1	To understand and recall the concepts, developmental stages,	K1, K2
	expression of genes and environmental influence in development.	
CO2	To determine the mechanism of genes in development and apply	К3
	experimental techniques to examine the normal and abnormal	
	embryonic development.	
CO3	To differentiate and compare the developmental stages of animals	K4
	and analyse them with appropriate biomolecular techniques.	
CO4	To assess the regulation and coordination of biomolecules for the	K5
	normal developmental process.	
CO5	To collate, discuss and design a broad perspective study on suitable	K6
	techniques to erase infertility and other developmental genetic	
	disorders.	

Course	e Code	PZO1MC03			
Course	e Title	Ethology and Evolutionary Biology			
Credits 05					
Hours/	/Week	05			
Catego	ory	Major core (MC) - Theory			
Semest	ter	Ι			
Regula	ation	2022			
	e Overviev				
1.		e familiarizes the learners with the nature of ar	imal b	ehaviou	r and the key
2		of evolution.	1.	c	1 1 ' 1
		es a higher and deeper understanding of the under	lying o	causes fo	or behavioural
	patterns.	e uncovers evolutionary approaches to the stud	lv of h	iologica	l and genetic
5.		The course is designed to stimulate learners to	•	-	•
	-	uestions on behavioural and evolutionary princip			
	e Objectivo				
		and the main principles and concepts in behaviou	ral and	evolutio	onary biology.
2.	To explore	e the behavioural patterns in animals and underst	and be	havioura	l strategies in
	the light of	f evolutionary theories.			
3.	To underst	tand the behavioural and evolutionary changes in	organ	isms.	
4.	To inculca	te scientific thinking and design experiments bas	sed on	theories	studied in the
	course.				
Prereq	uisites	Basic knowledge in Biology			
		SYLLABUS			
Unit		Content	Hrs	COs	Cognitive
					Level
Ι	Mechanis	ms underlying behaviour and habitat	15	CO1	K1, K2, K3,
	selection			CO2	K4, K5, K6
		sis of learning, memory, cognition, sleep and		CO3	
		Development of behaviour. Approaches and		CO4	
		n study of behaviour. Proximate and ultimate		CO5	
		Adaptive mechanisms of human perception.			
		election and preferences, dispersal, migration, and navigation, territoriality and territorial			
	ononunoi	i una nuvigution, contortanty and contortal			

	contests. Optimal foraging behaviour and complex			
	behaviour related to feeding.			
II	Social and reproductive behaviour	15	CO1	K1, K2, K3,
	Mating tactics and strategies, sperm competition, mate		CO2	K4, K5, K6
	choice, sexual conflict, parental investment and		CO3	
	reproductive success, parental care, parental favouritism,		CO4	
	monogamy, polyandry, polygyny, interspecific brood		CO5	
	parasitism, siblicide. Mutualism, altruism and evolution -			
	group selection, kin selection, reciprocal altruism.			
	Antipredator behaviour – camouflage, warning			
	colouration, Batesian mimicry, diverting colouration,			
	structures and behaviour, intimidation and fighting back			
	behaviour, group defense mechanisms. Communication			
	signals. Behavioural changes on domestication.			
III	Evolution theories and timescales	15	CO1	K1, K2, K3,
	Theories of evolution and origin of life - Lamarck and		CO2	K4, K5, K6
	Darwin - concepts of variation, adaptation, struggle,		CO3	
	fitness and natural selection, Mendelism, spontaneity of		CO4	
	mutations, evolutionary synthesis, origin of basic		CO5	
	biological molecules, abiotic synthesis of organic			
	monomers and polymers, concept of Oparin and Haldane,			
	Urey-Miller experiment, the first cell. Anaerobic			
	metabolism, photosynthesis and aerobic metabolism.			
	Evolution of prokaryotes and eukaryotes. Evolutionary			
	timescale, eras, epochs and periods. Major events in the			
	evolution of plants, animals and humans.			
IV	Concepts of molecular evolution	15	CO1	K1, K2, K3,
	Molecular divergence, molecular clock and neutral		CO2	K4, K5, K6
	evolution. Origin of new genes and proteins. Genome		CO3	
	evolution – genome expansion and restructuring during		CO4	
	evolution, gene duplication and divergence. Migration and		CO5	
	random genetic drift, adaptive radiation, speciation and			
	natural selection, speciation and sexual selection,			
	allopatricity, sympatricity, convergent evolution and co-			
	evolution. Molecular phylogeny using protein and DNA			
	sequence analysis. Use of ancient DNA for evolutionary			
	investigation and phylogeography.			

V	Population genetics and evolutionary approach to	15	CO1	K1, K2, K3,
	behaviour and medicine		CO2	K4, K5, K6
	Population genetics - populations, gene pool, gene		CO3	
	frequency, Hardy-Weinberg law, concepts and rate of		CO4	
	change in gene frequency through natural selection.		CO5	
	Evolution of the brain and intelligence in animals.			
	Evolution of diet and language in humans. Continuing			
	evolution of humans in the modern world. Core principles			
	of evolutionary medicine.			

Suggested Readings

- 1. Alcock, J. (2009). *Animal behaviour: An evolutionary approach* (9th ed). Sinauer Associates, Inc.
- 2. Barnard, C. J. (2012). *Animal behaviour: Ecology and evolution*. Springer Science & Business Media.
- 3. Darwin, C. (2020). *On the origin of species: The science classic*. United Kingdom: Wiley.
- 4. Dobzhansky, T. (2013). *Genetics and the origin of species*. United States: Columbia University Press.
- 5. Ferrell, V. (2006). The evolution handbook. Evolution Facts, Incorporated.
- Grunspan, D. Z., Nesse, R. M., Barnes, M. E., & Brownell, S. E., (2018). Core principles of evolutionary medicine: A Delphi study. *Evolution, Medicine, and Public Health*, 1(1), 13–23. https://doi.org/10.1093/emph/eox025
- 7. Hall, B. K., Hallgrímsson, B., & Strickberger, M. W. (2014). *Strickberger's evolution*. Jones and Bartlett Publishers Learning.
- Hauser, M. D., Yang, C., Berwick, R. C., Tattersall, I., Ryan, M. J., Watumull, J., Chomsky, N., & Lewontin, R. C. (2014). The mystery of language evolution. *Frontiers in Psychology*, *5*, 401. https://doi.org/10.3389/fpsyg.2014.00401
- 9. Levinson, G. (2019). *Rethinking evolution: The revolution that's hiding in plain sight*. World Scientific Publishing.
- 10. Losos, J. B. (2017). *The Princeton University guide to evolution*. Princeton University Press.
- 11. Lull, R. S. (1922). Organic evolution. Macmillan.
- 12. Mandal, F. B. (2015). *Textbook of animal behaviour*. Public Health Institute Learning Pvt, Ltd.
- 13. Manning, A., & Dawkins, M. S. (2012). *An introduction to animal behaviour*. Cambridge University Press.
- 14. Rastogi, V. B. (2018). Organic evolution, Medtech.

- 15. Rius, M., & Turon, X. (2020). Phylogeography and the description of geographic patterns in invasion genomics. *Frontiers in Ecology and Evolution*, 8, 439. https://doi.org/10.3389/fevo.2020.595711
- 16. Valone, T. J., & Nordell, S. E. (2021). *Animal behavior: Concepts, methods, and applications*. Oxford University Press.

Web Resources

- 1. https://www.frontiersin.org/journals/ecology-and-evolution
- 2. https://www.onezoom.org/
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822696/
- 4. https://courses.lumenlearning.com/wm-biology1/
- 5. https://onlinelibrary.wiley.com
- 6. https://www.youtube.com/watch?v=ELr9QgiGB6U
- 7. https://www.youtube.com/watch?v=w7Kwei1vuAE

Prepared by : Dr. M. D. Anitha Sebastian

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To define and describe the main principles and concepts in	K1, K2
	behavioural and evolutionary biology.	
CO2	To interpret behavioural patterns in animals and establish the	K3
	evolutionary relationships between organisms.	
CO3	To explain and infer behavioural strategies in the light of	K4
	evolutionary theories.	
CO4	To appraise and assess animal biodiversity from behavioural and	K5
	evolutionary viewpoints.	
CO5	To formulate scientific questions and to design experiments	K6
	based on theories studied in the course.	

Course Code	PZO1MC04			
Course Title	Community and Population Ecology			
Credits	05			
Hours/Week	05			
Category	Major Core (MC) - Theory			
Semester	Ι			
Regulation	2022			
Course Overview				

Course Overview

- 1. The course presents an understanding of the abiotic and biotic ecological mechanisms that determine the distribution and abundances of populations in nature.
- 2. The course introduces central theories within population ecology which include the importance of abiotic factors, competition, predation, herbivory, dispersal, diseases and harvesting strategies for fluctuations in population sizes.
- 3. Community ecology is the study of biotic interactions in plant and animal assemblages.
- 4. This course begins with a description of community types, competition and ecological niche, predator-prey interactions, food webs, habitat selection, and diversity. The material is supported by numerous examples from models and experimental studies.

Course Objectives

- 1. To understand the interaction of biotic and abiotic factors in an environment.
- 2. To explain and reflect about central ecological theories and ecological mechanisms which influence the distribution and abundance of individual in populations.
- 3. To apply different mathematical models that describe demographic properties in populations and estimate essential population parameters.

Prerequisites Basics of Environmental Biology and Bio-resource Management.

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive Level		
Ι	Structure of the community Physical Structure: Growth forms and Life forms. Stratification: Horizontal Zonation and Vertical Stratification. Biological Structure: Dominance, Diversity, Periodicity, Stratification, Eco-tone and Edge- effect, Ecological Niche, Community Productivity, Biotic Stability, Key stone species. Species richness and species diversity, Diversity Indices: Shannon-Weiner Index, Simpson Index (Ds), Gini–Simpson index.	15	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		
Π	Density-dependent and Density-independent growth Fundamentals of population growth, Types of models, Density-independent versus density-dependent growth: discrete generations, overlapping generations, Nonlinear density, birth and death rates, Allee effect. Tests of density dependence. Exponential growth in an invasive species, The finite rate of increase (λ) and the intrinsic rate of increase (r). Stochastic models of population growth and population viability analysis.	15	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		
III	Population regulation and Metapopulation ecology Populations with age structures, Survivorship, Fertility, Mortality curves, Expectation of life, Net reproductive rate, generation time, and the intrinsic rate of increase, Age structure and the stable age distribution. Reproductive value. Metapopulations and spatial ecology. MacArthur and Wilson and the equilibrium theory. Metapopulation dynamics, Non-equilibrium and patchy metapopulations, Assumptions and evidence for the existence of metapopulations in nature.	15	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		
IV	Life-history strategies Power laws, The metabolic theory of ecology, Relative importance of life history - Cole and Lewontin. The theory of r- and K-selection, Cost of reproduction and allocation of energy, Clutch size, Latitudinal gradients in clutch size,	15	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		

	Predation and its effects on life-history characteristics, Bet					
	hedging.					
V	Intra and Interspecific competition	15	CO1	K1, K2, K3,		
	The nature and characteristics of intraspecific		CO2	K4, K5, K6		
	competition, Density-dependence, Scramble and contest,		CO3			
	Individual variability, Competition in the fruit fly,		CO4			
	Negative competition. Interspecific competition: early		CO5			
	experiments and the competitive-exclusion principle, The					
	Lotka-Volterra competition equations, Laboratory					
	experiments and competition, Resource-based					
	competition theory. Modelling mutualism, Host-parasite					
	interactions. Predator-prey interactions, Nicholson-					
	Bailey models.					
Sugge	sted Readings					
1.	Begon, M., Thompson, D. J., Mortimer, M. (2009). Populati	ion Eco	ology: A	Unified Study		
	of Animals and Plants. Germany: Wiley.					
2.	Bossert, W. H. (1971). A primer of population biology. Ha	rvard U	Jniversit	у.		
3.	Diamond, P. o. G. J. (1986). Community Ecology. United	Kingdo	om: Harp	er & Row.		
4.	Hutto, R. L., & Young, J. S. (2002). Regional land bird me			pectives from		
	the northern Rocky Mountains. Wildlife Society bulletin (pp. 738-750).					
	Krebs, C. J. (1989). <i>Ecological methodology</i> . Harper & Ro					
6.	McGill, B. J., Mittelbach, G. G. (2019). Community Ecol Oxford.	logy. U	Jnited K	ingdom: OUP		
7.	Mittelbach, G. G., & McGill, B. J. (2019). <i>Community econ</i> University Press.	logy (2	nd ed). (Oxford		
8.	Morgan, B., Brooks, S., Gimenez, O., King, R. (2009). Baye	esian A	nalysis	for Population		
	Ecology. United States: CRC Press.		-	-		
9.	Rockwood, L. L. (2015). Introduction to Population Ecolog	gy. Gei	rmany: V	Viley.		
10	. Royama, T. (2021). Animal Population Ecology: An A	nalyti	cal App	roach. United		
	Kingdom: Cambridge University Press.					
11	1. Southwood, T. R. E., & Henderson, P. A. (2000). <i>Ecological methods</i> (3rd ed).					
	Methuen, and Co., Ltd.					
12	. Speight, M. R., Hunta, M. D., & Watt, A. D. (2006). Ecolo	gy of i	nsects: (Concepts and		
	application. Elsevier Science Publishing. Wilson EO & William H.					
13	3. Vandermeer, J. H., Goldberg, D. E. (2013). Population Ecology: First Principles -					
	Second Edition. United States: Princeton University Press.					

14. Wratten, S. D., & Fry, G. L. A. (1980). Field and laboratory exercises in ecology. Arnold, London. *Entomologist*, 505.

Web Resources

- 1. https://www.zsi.gov.in/App/index.aspx
- 2. https://moef.gov.in/en/
- 3. http://nbaindia.org/
- 4. https://www.mapress.com/zt/
- 5. https://www.bnhs.org/
- 6. https://wwf.panda.org/
- 7. https://cites.org/eng
- 8. https://indiabiodiversity.org/
- 9. https://www.esa.org/
- 10. http://indianecologicalsociety.com/society/
- 11. https://www.fes.org.in/

Prepared by : Dr. M. C. John Milton

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To understand, recognize and examine the difference between ecological populations from ecological communities and articulate the underlying processes that maintain these communities.	K1, K2
CO2	To compare, modify, apply and demonstrate the knowledge of the biogeography of species diversity.	К3
CO3	To survey, categorize and prioritize the controlling factors and cascading effects associated with food chain and food web.	K4
CO4	To compare, evaluate and assess the relations ship between patchy environments and meta-populations and metacommunities.	K5
CO5	To construct and organize ecological and evolutionary responses of species to changing environments.	K6

Cours	se Code	PZO1MC05				
Cours	se Title Entomology and Vector Biology					
Credi	Credits 05					
Hours	s/Week	05				
Categ	gory	Major Core (MC)- Theory				
Seme	ster	Ι				
Regu	lation	2022				
The c physic	 To understand the approaches in the management of vectors and vector borne diseases. To understand the role of insects as biocontrol agents in the control of pests. 					
Deres		nd insect pests.				
Prere	quisites	Basic knowledge in invertebrate classification SYLLABUS				
Unit		Content	Hrs	COs	Cognitive	
				005	Level	
Ι	Insect Cl	assification, Anatomy and Physiology	15	CO1	K1, K2,	
	Brief eve	olutionary history of Insects. Introduction to		CO2	K3, K4,	
	phylogen	y of insects and classification of Class Insecta.		CO3	K5, K6	
		modification and physiology of different		CO4		
		digestive, circulatory, respiratory, excretory,		CO5		
		sensory, reproductive, musculature, endocrine				
	and exocrine glands. physiology of integument, moulting;					
	-	netamorphosis and diapause.				
II		ectors and Vector Borne Diseases	15	CO1	K1, K2,	
		ectors: Order : Diptera (Mosquitoes and flies),		CO2	K3, K4,	
		Heteroptera (Bugs), Order : Anoplura (Lice),		CO3	K5, K6	
		Siphonaptera (Fleas), Order : Dictyoptera		CO4		
	(Cockroa	ches), Class : Arachnida, Order : Acarina (Mites		CO5		

	and Ticks), Order : Araneida (Spiders), Order :			
	Scorpionida (Scorpions). Vector Borne Diseases: <i>Aedes</i> :			
	Chikungunya, Dengue, Lymphatic filariasis, Rift Valley			
	fever, Yellow Fever and Zika. <i>Anopheles</i> :Lymphatic			
	filariasis, Malaria. <i>Culex</i> : Japanese encephalitis,			
	Lymphatic filariasis, West Nile fever . Blackflies:			
	Onchocerciasis (river blindness). Fleas: Plague			
	(transmitted from rats to humans). Tungiasis. Lice:			
	Typhus, Louse-borne relapsing fever. Sandflies:			
	Leishmaniasis, Sand fly fever (phlebotomus fever): Ticks			
	Crimean-Congo haemorrhagic fever, Lyme disease,			
	Relapsing fever (borreliosis), Rickettsial diseases (eg:			
	spotted fever and Q fever), Tick-borne encephalitis,			
	Tularaemia. Triatome bugs: Chagas disease (American			
	trypanosomiasis). Tsetse flies: Sleeping sickness (African			
	trypanosomiasis)			
III	Approaches to Insect Pest and Vector Management	15	CO1	K1, K2,
	Insecticides. Types of insecticides, Formulation; Toxicity		CO2	K3, K4,
	and safety. Application of insecticides: Problems		CO3	K5, K6
	associated with using insecticides. Environmental and		CO4	
	cultural control (Irrigation, Fertilizer, Sanitation. Alternate		CO5	
	hosts, Multiple and intercropping, Separation in time and			
	space, Crop geometry). Host resistance: Basis for			
	resistance, mechanisms of resistance.			
IV	Biocontrol agents	15	CO1	K1, K2,
	Predators, Parasitoids, Parasites. Pathogens: fungi,		CO2	K3, K4,
	viruses, bacteria, microsporidia, nematodes, arthropods.		CO3	K5, K6
	Transmission of pathogens. Area-wise management.		CO4	
	Techniques of biocontrol: constraints and reasons for		CO5	
	failure of biocontrol. Use of pheromones/ allelochemicals			
	in pest management; Mating disruption/confusion, Alarm			
	pheromones and oviposition deterrents; repellents.			
	Exclusion and barriers, Traps. Physical disturbance. Use			
	of Larvivorous Fish and plants in vector control.			
	Successful biological control projects, analysis, trends and			
	future possibilities of biological control. Importation of			

r						
	natural enemies, quarantine regulations, biotechnology in					
	biological control.					
V	Legislation and other alternatives	15	CO1	K1, K2,		
	Exclusion and routes of entry. Risk assessment; Damage		CO2	K3, K4,		
	thresholds Forecasting; Increasing agroecosystem		CO3	K5, K6		
	resistance Legislation for Pesticide use; Effects of		CO4			
	regulation; Genetically modified organisms. New		CO5			
	concepts and practices. Integrated vector management.					
	The integrated control/ IPM; Constraints towards IPM					
	adoption. Eradication versus management concept.					
Sugge	sted Readings					
1.	Blum, M.S. 1996. Fundamentals of Insect Physiology John	n Wille	y & Son	s. New York.		
2.	Cameron, M. & Lorenz, L. (2013) Biological and Enviro	onment	al Contr	ol of Disease		
	Vectors. CABI, UK .					
3.	Chapman J. L & Reiss M. J. (2006). Ecology: Principle	es & A	Applicati	ons. 2nd Ed.		
	Cambridge Univ. Press, Cambridge.					
4.	CSIRO (1990). The Insects of Australia: A Text Book for	or Stud	ents and	Researchers.		
	2nd Ed. Vols. I & II, CSIRO. Cornell Univ. Press, Ithaca.					
5.	Daly, H.V. Doyen, J.T. an Ehrlich, P.R. (1988). Introdu	ction t	o insect	Biology and		
	Diversity. McGraw Hill Ltd. London.					
6.	David B. V & Ananthkrishnan T. N. (2004). General and	Appli	ed Entor	nology. Tata-		
	McGraw Hill, New Delhi.					
7.	Dent, D. (2000) Insect pest management (2nd edition) CA	B Inter	national.			
8.	Dhaliwal & Arora (2001). Integrated Pest Management:	Conce	epts and	Approaches.		
	Kalyani Publ., New Delhi.					
9.	Duntson P. A. (2004). The Insects: Structure, Function and	Biodi	versity. H	Kalyani Publ.,		
	New Delhi.					
10	. Evans J. W. (2004). Outlines of Agricultural Entomology.	Asiatio	e Publ., N	New Delhi.		
11	. Gerson H & Smiley RL. (1990). Acarine Biocontrol Agen	nts – A	n Illustr	ated Key and		
	Manual. Chapman & Hall, New York.					
12	2. Ignacimuthu & Jayaraj (2003). Biological Control of Insec	ct Pests	s. Phoeni	x Publ., New		
	Delhi.					
13	B. Imms, A.D. (1992). A. General Text book of entomology.	Chapn	nan & Ha	all, London.		
14	14. Mani, M.S. (1997). General Entomology Oxford & IBH Publishing Co., New Delhi					
15	. Mullen & Durden (2009). Medical and veterinary ent	tomolo	gy, Aca	demic press,		
	London.					
L						

- 16. Nayar, K. R. Anantha krishnan, T.N. & David, B.V. (1998) General and Applied Entomoloty. Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 17. Pedigo, L.P. (1996) Entomology and pest management, Prentice Hall, N. Delhi.
- 18. Snodgrass. R.E. (1989). Principles of Insect Morphology. Mc Graw Hill, New York.
- 19. Srivastva, K. P. (1998). A Text Book of Applied Entomology (Vol. I & II) Kalyani Publihshers, New Delhi.
- 20. Van Emden, H.F. & M.W. Service. (2004) Pest and Vector Control. Cambridge University Press.
- 21. Wigglesworth, V.B. (1992). Principles of Insect Physiology ELBS edition.

Web Resources

- 1. https://icar.org.in//
- 2. https://www.icmr.gov.in//
- 3. https://vcrc.icmr.org.in//
- 4. https://dbtindia.gov.in//
- 5. https://www.who.int//
- 6. https://nimr.org.in//
- 7. https://www.monash.edu/ivbd

Prepared by : Dr. M.C. John Milton

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To identify, describe and explain the systematics position of Class: Insecta and enumerate details on vectors of human importance, their control and management.	K1, K2
CO2	To illustrate and demonstrate the anatomical, physiological adaptation of vectors and interpret their role in human health and pest control.	К3
CO3	To analyse, compare and categorise the systematics of insects and appraise their role as vectors and biocontrol agents.	K4
CO4	To evaluate, compare and summarise the biology, reproduction, and adaptations of vectors and assess and recommend measures for control and management.	K5
CO5	To design, and formulate diagnostic methods, control and management measures to eradicate vector borne diseases.	K6

Course Code	PZO1MC06				
Course Title	Diversity of Animals, Embryology and Ecology Lab Course				
Credits	03				
Hours/Week	06				
	Major Core (MC) - Lab				
Category	I				
Semester	-				
Regulation	2022				
Course Overvie	2W				
	e in the student a fascination for nature and learn the bionomics of vertebrates.				
2. Learn the	e principles, applications and management of environmental science.				
3. Describe	the diversity in form, structure and habits of vertebrates and invertebrates.				
4. Able to i	identify the invertebrates and classify them up to the class level with the basis				
of system	natic.				
5. Familiar	with various stages involved in the developing embryo.				
6. Understand the basis of life processes in the non-chordates and recognize					
economically important invertebrate fauna.					
7. Realise	the fundamental characteristics of diversity of animals, embryology and				
ecologica	al methods.				
Course Objectiv	ves				
1. To provid	de a hands-on training experience in anatomy through dissections.				
2. To obtain	n an overview of economically important invertebrate fauna.				
3. To learn	the basics of systematic and understand the hierarchy of different categories.				
4. To famili	iarize students with organ system in common, easily available animals.				
5. To apply scientific methods in day-to-day life.					
6. To emphasize the 'seeing is believing' typical examples and economically import					
specimen preserved to be studied.					
7. To devel	op positive attitude towards sustainable development.				
Pre-requisites	Knowledge in Biology				

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive		
				Level		
Ι	Major Dissection	30	CO1	K1,K2, K3,		
	Nervous System: Cockroach, Prawn, Apple Snail, Sepia,		CO2	K4, K5, K6		
	Crab, Shark: Arterial system: Frog. Cranial Nerves: Frog/		CO3			
	Shark.		CO4			
	Minor Dissection		CO5			
	Cockroach: Salivary Glands, Digestive System,					
	Reproductive System. Prawn – Appendages. Red Snapper –Digestive System.					
	Mounting: Mouth parts: Cockroach, Honey bee, Sting					
	apparatus of honeybee. Body setae of earthworm, Fish					
	scales: Cycloid, Ctenoid. Radula of Pila.					
II	Embryology	20	CO1	K1,K2, K3,		
	Mounting of chick embryo - whole mount 24hrs, 32hrs,		CO2	K4, K5, K6		
	72hrs, 96hrs of incubation period embryo.		CO3			
	Metamorphosis: Moth/Butterfly.		CO4			
			CO5			
III	Study of pond/ wetland/ river ecosystem. Ecological	10	CO1	K1,K2, K3,		
	analysis		CO2	K4, K5, K6		
	Determination of, acidity, total hardness, calcium		CO3			
	hardness, residual chlorine, turbidity from the given		CO4			
	samples. Identification of soil arthropod. Study of marine		CO5			
	and fresh water planktons, study of rocky and sandy shore					
	fauna.					
IV	Study of the following specimens with special reference	15	CO1	K1,K2, K3,		
	to their salient features and their modes of life		CO2	K4, K5, K6		
	(Spotters)		CO3			
	Invertebrates: Gorgonia, Brain Coral, Murex, Nautilus,		CO4			
	Chiton, Sea star, Holothuria, Balanus, Neries, Physalia,		CO5			
	Peripatus, Scorpion, Limulus, Mytilus, Arenicola.					
	Chordates: Amphioxus, Asidian, Balanglosus, Sea horse,					
	Chameleon, Exocetus, Syngnathus, Flatfish, Naja naja,					
	Russle viper, Krait, Poisonous apparatus of snake,					
	Rachophorus, Wood pecker.					

	Embryology: Observation of chick embryo at various				
	stages of development. Developmental stages of frog,				
	Goat embryo, Human embryo, Shark yolk sack placenta.				
	Osteology: Turtle - Carapace and plastron. Synsacrum of				
	bird, Typical; vertebra, thoracic and lumbar vertebrae of				
	dog/bird, Skull of bird, Skeletal system of frog.				
	Animal Association: Sacculina on Crab, Cymothoa in				
	Fish Gills, Ascaris, Taenia Solium, Hermit crab on sea				
	anemone, Sucker fish.				
	Taxonomy				
	Identification, classification up to the order and brief				
	note of the following specimens.				
	Prochordates – Amphioxus (entire). Pisces - 2				
	cartilaginous fishes, 2 fishes with accessory respiratory				
	organs, 2 edible fishes, 2 culture fishes and 2 Cat fishes.				
	Amphibia - Any 3 (representing the three orders).				
	Reptilia - Poisonous and non -poisonous snakes, Draco,				
	Chamaelon. Aves - Different feathers, Pigeon. Mammals				
	– Bat				
V	Field and Institutional Visit	15	CO1	K1,K2, K3,	
	Industrial / institutional visit, shore fauna for collecting		CO2	K4, K5, K6	
	specimen, identification of new species and preparing		CO3		
	catalogue.		CO4		
	Assignment		CO5		
	Submit a detailed survey and inventory report on select				
	invertebrate or vertebrate specimen with taxonomic key.				
Sugge	sted Readings				
1.	Beck, W. S., Karel, F., Liem, & Simpson, G. G.(2000). Life	e: An ir	ntroducti	on to biology.	
	HarperCollins Publishers.				
2.	Bhaskaran, K.K. & Biju Kumar, A.(2003). Chordate Zoology. Manjusha Publications.				
3.	Colinvaux, P. A. (1993) Ecology (2nd edition) Wiley, John and Sons, Inc.				
4.	Hegner, P.R. W. (2015). Practical Zoology, BiblioLife, 522pp.				
5.	Kendegh, F.C. (1984). Ecology with Special Reference to Animal and Man. Prentice				
	Hall Inc.				
1					

6. Krebs, C. J. (2001). Ecology (6th edition) Benjamin Cummings. 57

7. Lal, S.S. (2005). A text Book of Practical Zoology: Invertebrate, Rastogi, Meerut.

8. Odum, E.P.,(2008). Fundamentals of Ecology. Indian Edition. Brooks/Cole.

- 9. Ricklefs, R.E. (2000). Ecology (5th edition) Chiron Press.
- 10. Southwood, T.R.E. & Henderson, P.A. (2000). Ecological Methods (3rd edition) Blackwell Sci.
- 11. Stiling, P. D. (2012). Ecology Companion Site: Global Insights and Investigations. McGraw Hill Education.
- 12. Young, J. Z. (2006). The life of Vertebrates. Oxford University Press.

- 1. https://animaldiversity.org/
- 2. https://vlab.amrita.edu/index.php?sub=3&brch=272
- 3. http://rms.rsccd.edu/faculty/kimomorris/bio212/oer/oerbio_ch28.pdf
- 4. https://bit.ly/3FNRrln
- 5. https://libguides.humboldt.edu

Prepared by : Dr. V. Pushpa Rani

COs	CO Description	Cognitive Level
CO1	To identify and classify invertebrates and vertebrates and to understand the types of association between animals.	K1, K2
CO2	To perform directed dissections of animals representing different phyla.	К3
CO3	To analyze the different ecological parameters to compare physical conditions of different ecosystems.	К4
CO4	To compile the changes in different developmental stages of vertebrates.	K5
CO5	To prepare catalogue of collected and identified species and to compile detailed survey data of field study.	K6

Course Code	PZO2MC01
Course Title	Biophysics, Biochemistry and Bioenergetics
Credits	03
Hours/Week	04
Category	Major Core (MC) - Theory
Semester	II
Regulation	2022

- 1. Course module is designed to develop a clear understanding of the biophysics, biochemistry and bioenergetics with an emphasis on structure and physico chemical properties of biomolecules.
- 2. This course gives a broad overview of the foundations, modern concepts and recent trends in the metabolism of carbohydrates, proteins, Lipids and nucleic acids.
- 3. To understand everything that is there to know and understand about biomolecules, their classification and their metabolism.
- 4. This course gives a broad overview of the foundations, modern concepts and recent trends in Bioenergetic processes, such as cellular respiration or photosynthesis, are essential to most aspects of cellular metabolism, therefore to life itself.
- 5. After successful completion of the course the candidate should be able to design and comprehend different variety of biomolecules and their dynamics for modern research.

- 1. The course entails giving in-depth theoretical knowledge about the field of biochemistry, biophysics and bioenergetics.
- 2. Make the Students capable to design research and industrial projects to solve the problems of biological complexity and resolve various health & environmental issues.
- 3. To get knowledge and understanding of the fundamental of biophysical aspects of biology and application of instruments in biological laboratory.
- 4. To develop the Human Resource with the interdisciplinary approach in the field of Science & Technology.
- 5. To highlights the various applications of physical sciences to biology and bridges physical sciences (physics, chemistry, mathematics) and biological sciences (Botany, Zoology, Microbiology etc)

Prerequisites	Basic knowledge on Biology, Chemistry and Physics
---------------	---

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive		
				Level		
Ι	Energies, Forces and Bonds	14	CO1	K1, K2, K3,		
	Elementary composition of living matter, Structure of an		CO2	K4, K5, K6		
	atom, Ionization energy, electron affinity and chemical		CO3			
	binding. Interatomic potentials for strong bonds and weak		CO4			
	bonds, Non - central forces and bond energies. Rates of		CO5			
	reaction: Free energy, Internal energy, Radiation energy,					
	thermodynamics, reaction kinetics, water - acids - bases					
	and aqueous reactions. Transport processes: Membrane					
	physics and structure, Diffusion, viscosity and thermal					
	conduction.					
II	Biochemistry of Carbohydrate	12	CO1	K1, K2, K3,		
	Overview of carbohydrate metabolism and metabolic		CO2	K4, K5, K6		
	reactions, Aerobic and Anaerobic production of ATP,		CO3			
	TCA cycle, regulation of glycogen metabolism:		CO4			
	Glycogenesis and glycogenolysis - glycogen storage		CO5			
	diseases. Glycolysis, regulation and utilization of sugars					
	other than glucose. Signaling pathways - Hormonal					
	regulation of carbohydrate metabolism.					
III	Metabolism of protein and amino acids	10	CO1	K1, K2, K3,		
	Amino acid metabolism: Biosynthesis of amino acids and		CO2	K4, K5, K6		
	its regulation, Role of essential and non-essential amino		CO3			
	acids in growth and development, Formation and disposal		CO4			
	of ammonia, Urea cycle and its regulation. Disorders of		CO5			
	amino acids metabolism, Introduction to Protein					
	structures and Protein folding; Conjugated proteins,					
	Metalloproteins, Structure-function and classification of					
	proteins.					
IV	Lipid and Nucleic acid Metabolism	12	CO1	K1, K2, K3,		
	Absorption, transport and storage of lipids and TAGs,		CO2	K4, K5, K6		
	Lipid metabolism and regulation, Biosynthesis and		CO3			
	degradation of TAGs and phospholipids, cholesterol,		CO4			
	lipoprotein, fatty acid oxidation and ketoacidosis.		CO5			
	Structure, composition and properties of nucleic acids,					

	purine and pyrimidine nucleotides and its regulation. De-				
	Novo and salvage pathways of nucleotides synthesis.				
V	Bioenergetics	12	CO1	K1, K2, K3,	
	High energy compounds. ATP as Universal currency of		CO2	K4, K5, K6	
	free energy, oxidation-reduction reactions. Organization		CO3		
	of electron carriers and Classes of electron-transferring		CO4		
	enzymes, inhibiters of electron transport. Mitochondrial		CO5		
	electron transporters and shuttle systems, microsomal				
	electron transport chain. Mechanism of oxidative				
	phosphorylation, Role of electron transport energy,				
	Functions of ATP, substrate level phosphorylation,				
	uncouplers and inhibitors of oxidative phosphorylation.				
Sugge	sted Readings				
1.	Ambika Shanmugam & Ramadevi. K., (2016). Fundamer	ntals of	f Biocher	nistry for	
	Medical Students. (8th ed). Lippincott Williams & Wilking	5.			
2.	Berg, J. M., Tymoczko, J. L., & Stryer, L. (2012). Ba	iochem	istry. (7	th ed).W. H.	
	Freeman.				
3.	Conn, E. E., Stumpf, P. K., Bruening, G., & Doi, F	R. H.	(2007).	Principles of	
	biochemistry (5th ed). Wiley & Sons, Inc.				
4.	. David L. Nelson & Michael M. Cox (2017). Lehninger principles of biochemistry				
	(7th.ed). W. H. Freeman and Company. New York.				
5.	Elliott, W. H., & Elliot, C. (2003). Biochemistry and	molec	ular bic	ology. Oxford	
	University Press.				
6.	Garret, R. H., & Grisham, C. M. (1995). Biochemistry.	(5 the	ln).CBS	publishers &	
	distributors, Delhi				
7.	Hames, D.,& Hooper, N.,(2005). Instant notes in Bioch	nemistr	y (3rd.e	d). Taylor &	
	Francis, London.				
8.	Horton, H. R., Morson, L. A., Scrimgeour, K. G., Perry, M	Л. D.,	& Rawn	, J. D. (2006).	
	Principles of biochemistry. Pearson educations, internation	nal, Ne	wDelhi.		
9.	Murray, R. K., & Granner, D. K., Mayes & P.A., Rodv	vell, V	.W. (20	12). Harper's.	
	Biochemistry (29th ed). Lange Medical Books/McGraw-Hi	11. <u>ISB</u>	<u>N:</u> 978-0	0-07-176-576-	
	3.				
10	. Nicholls, D. G., & Ferguson, S. J. (1992). Bioenergetics. A	Academ	nic Press		
11	. Tymoczko, J. L., & Stryer, L. (2011). Biochemistry (7	th.ed).	W. H.	Freeman and	
	Company. New York.				
12	. Voet, D., & Voet, J. G. (2011). Biochemistry (4th ed). John	n Wile	y & Sons	S.	
	. Zubay, G. (2017). Biochemistry (4th ed) . McGraw-Hill.	·			

- 1. https://courses.lumenlearning.com/wm-biology1/
- 2. https://blanco.biomol.uci.edu/WWWResources.html
- 3. https://bit.ly/3Lkr9s6
- 4. https://bit.ly/3wqMdI5
- 5. https://bit.ly/3Lf2W6E
- 6. https://www.easybiologyclass.com/

Prepared by : Dr. K. Thresia Mathews

COs	CO Description	Cognitive Level
CO1	To understand the basics of biochemistry, biophysics and bioenergetics.	K1, K2
CO2	To correlate the biophysical aspects of biology and the important metabolic pathways.	К3
CO3	To analyze and compare the role of different biomolecules in cellular processes.	K4
CO4	To summarize the various stages to produce different energy rich molecules in cells.	K5
CO5	To collate work plans and design projects to understand biological complexity.	K6

Course Code	PZO2MC02
Course Title	Research Methodology and Biostatistics
Credits	03
Hours/Week	04
Category	Major Core (MC) - Theory
Semester	II
Regulation	2022

To provide knowledge on research methods, techniques and the process, and to develop skills in the application of research methods and biostatistics for biological data analysis. Solve the statistical problems based on Central Tendency, Dispersion, Correlation and regression and ANOVA. Solve numerical problems on test of hypothesis using biological data and interpreted in the dissertation/ research article.

- 1. To understand and define the basic knowledge about the research problem demonstrate knowledge of research processes (reading, evaluating, and developing);
- 2. To compute, construct and prepare the key elements of a good research proposal/report.
- 3. To develop and formulate a possible novel research interest area using specific research designs with statistical tools.
- 4. To organize and conduct research (advanced project) in a more appropriate manner.
- 5. To describe, compare, and contrast descriptive and inferential statistics, and provide examples of their use in novelty research.

Prere	equisites Basic knowledge about Mathematics and Computer					
	SYLLABUS					
Unit	Unit Content		Hrs	COs	Cognitive	
					Level	
Ι	Introduc	tion to research	6	CO1	K1, K2, K3,	
	Definition	n, need for research, stages of research, research		CO2	K4, K5, K6	
	methods	and methodology, Types of research –		CO3		
	Descripti	ve vs. Analytical, Applied vs. Fundamental,		CO4		
	Quantitat	ive vs. Qualitative, Conceptual vs. Empirical,		CO5		
	concept	of applied and basic research process,				
	character	istics of good research.				

II Research process and Research Design 12	CO1	K1, K2, K3,
L O	CO2	K4, K5, K6
	CO3	7 - 7 -
	CO4	
	CO5	
secondary sources, reviews, monograph, patents,		
research database, web as a source, searching the web,		
critical literature review, identifying gap areas from		
literature and research database, development of working		
hypothesis and Research Design. Sampling Design,		
Criteria of Selecting a Sampling Procedure,		
Characteristics of Good Sample Design.		
	CO1	K1, K2, K3,
Ö	CO2	K4, K5, K6
	CO3	111, 110, 110
	CO4	
	CO5	
Questionnaire. Collection data, Methods of Data	005	
Preparation – Univariate and Bivariate analysis		
(Frequency table & cross tabulation), Classification &		
tabulation of data.		
IV Data Analysis and Outcome Assessment 16	CO1	K1, K2, K3,
•	CO2	K4, K5, K6
	CO3	
	CO4	
Binomial distribution, Cumulative frequency, Graphical	CO5	
representation of data: Histogram, Pie-Diagram,		
Pictogram, Ogive Curve. Hypothesis testing for		
significance, types of hypothesis, Chi square and		
goodness of fit, Type I & Type II errors. Confidence		
Interval, Level of Significance. Linear Regression and		
Correlation- Types of Correlation, Karl Pearson's		
coefficient of correlation and its properties, Spearman's		
rank correlation. ANOVA: One way and two way		
classified data – 'F'-test. Biodiversity index: Simson and		
$c_{10} = 1 - c_{10} = 1 - c_{10} = 0$		
Shannon index. Interpretation of statistical test results.		

V	Statistical software and Report writing	16	CO1	K1, K2, K3,
	Introduction about Excel, SPSS, SAS, R language and		CO2	K4, K5, K6
	Python. Report writing -target audience -types of reports		CO3	
	-contents of reports - styles and conventions in reporting		CO4	
	-steps in drafting a report. Paper writing/ thesis writing,		CO5	
	Different parts of the Research paper/Thesis Presentation			
	oral/poster presentation. Principles of scientific writing			
	and components of Dissertation, Plagiarism.			

Suggested Readings

- 1. Dawson, C. (2002). Practical research methods. UBS Publishers, New Delhi.
- 2. Gupta, M., & Gupta, D. (2011). *Research methodology*. Public Health Institute Learning Private Ltd.
- 3. Gurumani, N. (2011), Research methodology for Biological Sciences-MJP Publishers.
- 4. Kothari, C. R. (1990). Research methodology: Methods and techniques. New. *Ageing International*, 418p.
- 5. Pagano M & Gauvreau, K. (2000). Principles of biostatistics, Duxbury Press.
- 6. Kothari, C. R. (2009), Research methodology. New Age International.
- 7. Ruzin, S. E. (1999). Plant microtechnique and microscopy. Oxford University Press, New York, U.S.A.
- 8. Stapleton, P., Yondeowei, A., Mukanyange, J & Houten, H. (1995). Scientific writing for agricultural research scientists a training reference manual. West Africa Rice Development Association, Hong Kong.
- 9. Triola, M. M., Triola, M. F., & Roy, J. (2018). *Biostatistics for the biological and health sciences* (2nd ed). Pearson.
- Woolson. (1987), Statistical Methods for the Analysis of Biomedical Data. John Wiley & Sons, Inc, New York.

Web Resources

- 1. https://bit.ly/3Liq1Fg
- 2. https://bit.ly/3l8Zb8a
- 3. https://research-methodology.net/
- 4. https://datatab.net/statistics-calculator/hypothesis-test
- 5. https://www.statskingdom.com/
- 6. https://library.famu.edu/c.php?g=276373&p=1841937

Prepared by : Dr. M. Raja

COs	CO Description	Cognitive Level
CO1	To understand and recall the basics of research methodology and biostatistics.	K1, K2
CO2	To explore different statistical tools and to incorporate them in interpreting experimental results.	К3
CO3	To analyze new research articles and to compare experimental designs and statistical tools used in different fields of study.	K4
CO4	To summarize, criticize and justify experimental results for compilation of research data.	K5
CO5	To formulate hypothesis and compute, construct and prepare the key elements of a good research proposal.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO2MC03
Course Title	Inheritance Biology
Credits	05
Hours/Week	05
Category	Major Core (MC) - Theory
Semester	II
Regulation	2022

- 1. This course describe the nature and structure of genetic material and the role of genes in determining the characteristics of organisms and also the relationship between the various mechanisms of genetic inheritance.
- 2. Topics will include the Principles of inheritance biology with an emphasis on cellular metabolism, molecular genetics, population allele and genotype frequencies and chromosome spreads.
- 3. Course module is designed to develop a clear understanding of the underlying concepts of chromosome structure, genome organization, advanced aspects of chromosome biology and genetics of cell cycle regulation.
- 4. Course emphasis on a knowledge of Mendel's Laws of inheritance, genetic crosses, types of modes of inheritance, genetic linkage, genetic mapping, gene expression and regulation.

- 1. To understand the structure and function of the DNA molecule to its functional role in encoding genetic material.
- 2. To distinguish between dominant, recessive, autosomal, X-linked and cytoplasmic modes of inheritance.
- 3. To analyze gene expression and relationships between species based on the principles of inheritance as formulated by Mendel.
- 4. To describe normal chromosome number, structure, and behaviour in human cells and understand extra nuclear inheritance, linkage & crossing over.
- 5. To apply the Hardy-Weinberg Law in analyzing population genetics for gene frequency, sex linkage, equilibrium, and heterozygote frequency.

Prerequisites	Basic knowledge on Molecular Biology, Cell Biology and Biochemistry
---------------	---

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive		
				Level		
Ι	Concept of gene	10	CO1	K1, K2, K3,		
	Gene concept and organization, Heterochromatin and		CO2	K4, K5, K6		
	Euchromatin; DNA as genetic material, DNA structure		CO3			
	and replication. RNA as genetic material, types of RNA.		CO4			
	Allelic and non-allelic interactions, pseudo allele, lethal		CO5			
	alleles, multiple alleles, test of allelism, complementation					
	tests. Fine structure of gene; Prokaryotic and eukaryotic					
	gene regulation.					
II	Mendelian and non Mendelian inheritance	16	CO1	K1, K2, K3,		
	Dominance, segregation, independent assortment.		CO2	K4, K5, K6		
	Extensions of Mendelian principles: Codominance,		CO3			
	incomplete dominance, gene interactions, pleiotropy,		CO4			
	genomic imprinting, penetrance and expressivity,		CO5			
	phenocopy.					
	Sex Chromosomes and sex determination in animals;					
	Dosage Compensation of X-Linked Genes; sex limited					
	and sex influenced characters. Extra chromosomal					
	inheritance: Inheritance of Mitochondrial and chloroplast					
	genes, maternal inheritance.					
III	Linkage, crossing over and genetic maps of	16	CO1	K1, K2, K3,		
	chromosomes		CO2	K4, K5, K6		
	Linkage groups and chromosomes; Stern's hypothesis,		CO3			
	Creighton and McClintock's experiments, single cross		CO4			
	over, multiple cross over, two-point cross, three-point		CO5			
	cross, map distances, gene order, interference and co-					
	efficient of coincidence. Haploid mapping (Neurospora),					
	Mapping in bacteria and bacteriophages. recombination,					
	tetrad analysis, mapping with molecular markers,					
	mapping by using somatic cell hybrids.	1.5	001	171 170 170		
IV	Microbial genetics	15	CO1	K1, K2, K3,		
	Fundamentals of Bacterial and Viral Genetics; Methods of		CO2	K4, K5, K6		
	genetic transfers – transformation, conjugation, mapping		CO3			
	genes by interrupted mating, transduction and sexduction,		CO4			
	Genetics of Temperate and Intemperate Bacteriophages,		CO5			

	T4 Bacteriophage; Retrovirus and transposable elements			
	in prokaryotes and eukaryotes.			
V	Human Genetics	18	CO1	K1, K2, K3,
v	Human chromosomes and karyotyping; Techniques in	10	CO1 CO2	K1, K2, K3, K4, K5, K6
			CO2 CO3	K4, K3, K0
	human chromosome analysis; Pedigree analysis,		CO3 CO4	
	Numerical and structural abnormalities of chromosomes			
	and genetic disorders. Mendelian based heritable diseases		CO5	
	in man; Quantitative genetics: Polygenic inheritance,			
	heritability and its measurements. Effect of environmental			
	factors and artificial selection on polygenic inheritance.			
	Statistics of Quantitative Genetics; Analysis of			
	quantitative traits in human: IQ, QTL. Mutation,			
	mutagenic agents and humans; Future of human genetics.			
Sugge	sted Readings			
1.	Alberts B, Johnson A, Lewis J, Raff M, Roberts K & V	Walter	P. (2014	4). Molecular
	Biology of the Cell. 7th Ed. Garl & Science.			
2.	2. Carroll S.B., Doebley J., Griffiths, A.J.F. & Wessler, S.R. (2018). An Introduction			
	Genetic Analysis. W. H. Freeman & Co. Ltd.			
3.	De Robertis, E.D.P. & De Robertis, E.M.F., (2006). Cel	l & M	olecular	Biology. (8th
	Edition). New York : Lippincott William & Wilkins.			
4.	Gardner, E.J., Simmons, M.J & Snustad, D.P. (2008).	Princip	oles of C	Genetics. (8th
	edition) Wiley & Sons. Inc.			
5.	Hartl D L & Ruvolo M. (2011). Genetics – Analysis of Gen	nes & C	Genomes	s. (8th Student
	Edition). Jones & Bartlett.			
6.	Harvey F Lodish, Arnold Berk, Chris Kaiser, Monty Kriege	er, Mat	thew P S	cott, Anthony
	Bretscher, Hidde L Ploegh, Paul T Matsudaira. (2007). N	Molecu	lar Cell	BiologyW.H.
	Freeman & Company.			
7.	Klug, W.S., Cummings, M.R. & Spencer, C.A. (2012)	. Conc	epts of	Genetics. (X
	edition) Benjamin Cummings.			
8.	Primrose, S. B. & Twyman, R. M., (2006). Principle	s of C	Gene Ma	anipulation &
	Genomics. (7th Edition). Blackwell Publishing, West Suss	ex.		
9.	Snustad, Russell, P.J. (2010). Genetics. Benjamin Cummin	igs.		
10	Walker & Ginglod (1992). Molecular Biology & Biote	chnolo	gy, Roy	al Society of
	Chemistry Cambridge.			
11	Watson JD, Baker TA, Bell SP, Gann A, Levine M & I	Losick	R. (201	4). Molecular
	Biology of the Gene. (7th Ed). Pearson.			

12. Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT & Miller JH (2004). Introduction to Genetic analysis. (8th Edition). *W.H Freeman & Company*.

Web Resources

- 1. https://www.ciando.com
- 2. https://www.nigms.nih.gov
- 3. https://www.genome.gov
- 4. https://www.researchgate.net
- 5. https://pages.jh.edu
- 6. https://le.ac.uk
- 7. https://learn.genetics.utah.edu

Prepared by : Dr D. Robert Selvam

COs	CO Description	Cognitive Level
CO1	To define and recall the basic concepts of Classical Genetics.	K1, K2
CO2	To demonstrate the principles of inheritance and examine the interactions of gene related to Mendel's laws of segregation and independent assortment.	К3
CO3	To outline gene linkage and to differentiate mapping with molecular markers.	K4
CO4	To select and test the methods of genetic transfers and gene interaction, justify the process of restriction mapping and value Pedigree analysis.	K5
CO5	To develop experimental models for quantitative and qualitative genetics.	K6

Cours	e Code PZO2MC04						
Cours	e Title	Cellular Organization and Molecular Processes					
Credit	ts	04					
Hours	/Week	04					
Catego	ory	MC					
Semes	ter	II					
Regula	ation	2022					
This co prokar types.	yotic cell a	provide knowledge about the complex organizati and the molecular mechanisms of the cellular pr	cocesse	es that ex	•		
1. 2.	To descril	be the molecular processes of DNA replication, t in how they are managed in cells.	-		nd translation,		
	between the	rate the protein and nucleic acid structure and function, and the relationship					
5.	eukaryote To formu cancer cel	late principles and application of gene cloning i	n indu	stry and	medicine for		
Prerec	quisites	Basic knowledge about cell biology					
	1	SYLLABUS					
Unit		Content	Hrs	COs	Cognitive Level		
Ι	Membran membran osmosis, i mechanis transport, organizat wall, nuc	organization the structure and function: Structure of model e, lipid bilayer and membrane protein diffusion, ion channels, active transport, membrane pumps, m of sorting and regulation of intracellular electrical properties of membranes. Structural ion and function of intracellular organelles: Cell cleus, mitochondria, Golgi bodies, lysosomes, mic reticulum, peroxisomes, plastids, vacuoles,	14	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		

]
	chloroplast, structure & function of cytoskeleton and its			
	role in motility.			
II	Organization of genes, chromosomes and cell cycle	10	CO1	K1, K2, K3,
	Organization of genes and chromosomes: Operon, unique		CO2	K4, K5, K6
	and repetitive DNA, interrupted genes, gene families,		CO3	
	structure of chromatin and chromosomes,		CO4	
	heterochromatin, euchromatin, transposons. Mitosis and		CO5	
	meiosis, their regulation, steps in cell cycle, regulation and			
	control of cell cycle.			
III	DNA and RNA processing	12	CO1	K1, K2, K3,
	DNA replication in prokaryotes and eukaryotes, enzymes		CO2	K4, K5, K6
	involved, replication origin and replication fork, types of		CO3	
	replication, extrachromosomal replicons, DNA damage		CO4	
	and repair mechanisms, RNA synthesis and processing:		CO5	
	transcription factors and machinery, formation of			
	initiation complex, transcription activator and repressor,			
	RNA polymerases, capping, elongation, and termination,			
	RNA processing, RNA editing, splicing, and			
	polyadenylation, Different types of RNA, RNA transport.			
	Mobile DNA elements: Transposable elements in bacteria,			
	IS elements, composite transposons, replicative, non-			
	replicative transposons, Mu transposition, SINES and			
	LINES. Retroviruses and retrotransposon.			
IV	Protein synthesis and molecular processing	12		K1, K2, K3,
	Ribosome, formation of initiation complex, initiation		CO1	K4, K5, K6
	factors and their regulation, elongation and elongation		CO2	
	factors, termination, genetic code, aminoacylation of		CO3	
	tRNA, tRNA-identity, aminoacyl tRNA synthetase, and		CO4	
	translational proof-reading, translational inhibitors, Post-		CO5	
	translational modification of proteins. Lac operon.			
	Regulation of gene expression at transcription and			
	translation level: regulating the expression of phages,			
	viruses, prokaryotic and eukaryotic genes, role of			
	chromatin in gene expression and gene silencing.			
	666666			

		-			
V	Cell signalling, communication	12	CO1	K1, K2, K3,	
	Host parasite interaction, Cell signalling, Hormones and		CO2	K4, K5, K6	
	their receptors, cell surface receptor, signaling through G-		CO3		
	protein coupled receptors, signal transduction pathways,		CO4		
	second messengers, regulation of signalling pathways,		CO5		
	Cellular communication, principles of cell				
	communication, cell adhesion and roles of different				
	adhesion molecules, gap junctions, extracellular matrix,				
	integrins, neurotransmission and its regulation. Cancer:				
	Genetic rearrangements in progenitor cells, oncogenes,				
	tumor suppressor genes, cancer and cell cycle, virus-				
	induced cancer, metastasis, interaction of cancer cells with				
	normal cells, therapeutic interventions of uncontrolled cell				
	growth.				
	growth.				
C	-4- d Dec dimen				
00	sted Readings	XX7 1/	D (201		
1.	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., &	walter	r, P. (201	4). Molecular	
	<i>biology of the cell</i> (7th ed). Garland Science.	D (0)			
2.	Becker, W. M., Kleinsmith, L. J., Hardin, J., & Bertoni, G		009). Th	e world of the	
	cell (7th ed). Benjamin-Cummings Publishing. San Francis				
3.	Cooper, G. M., & Hausman, R. E. (2009). The cell: A molecular approach (5th ed).				
	ASM Press and Sinauer Associates. MA.				
4.	De Robertis, E. D. P., & De Robertis, E. M. F. (2006). Cel	l and n	nolecula	r biology (8th	
	ed). Lippincott Williams & Wilkins.				
5.		a Lat	oratory	Protocol (4th	
	edition) CSHL Press.				
6.	Hancock, J. T. (2006). Cell signaling (2nd ed). Oxford Uni	•			
7.	Karp, G. (2010). Cell and molecular biology: Concepts and	d expe	riments	(6th ed). John	
	Wiley & Sons, Inc.				
8.	Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., & Bretsch	er, A. ((2016). A	Iolecular and	
	Cellular Biology. W H Freeman				
9.	Malacinski, G. M. (2010). Essential of molecular biology ((4th ed)). Narosa	Publication.	
10	. Paul, A. (2011). Text books of cell and molecular biology	(3rd e	d), Book	s & allied (P)	
	Ltd. Kolkata, India.				
11	. Walter, P. (2007) Molecular Biology of the Cell (5th edition	n) Gar	land Sci	ence.	
	. Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levin				
	Molecular biology of the gene (7th ed). Pearson.				
L					

- 1. https://plato.stanford.edu/entries/molecular-biology/
- 2. https://www.sciencedaily.com/terms/molecular_biology.htm
- 3. https://en.wikipedia.org/wiki/Cell_(biology)
- 4. https://www.genetics.org/
- 5. https://www.cancer.gov/research/areas/biology
- 6. http://www.freebookcentre.net/Biology/Molecular-Biology-Books.html
- 7. http://isca.co.in/BIO_SCI/lab_manual/IeP-BS-LM-2013-001.pdf

Prepared by : Dr. M. Raja

COs	CO Description	Cognitive Level
CO1	To understand the basic structure and functions of cellular components.	K1, K2
CO2	To compare the principle and regulation of gene expression in prokaryotes and eukaryotes.	К3
CO3	To analyze the relationship between the morphology and functions of proteins and nucleic acids.	K4
CO4	Evaluate the role of biomolecules in the functioning of cells.	K5
CO5	To summarize the molecular processes of gene expression, cell signalling, cell communication and their abnormalities.	K6

Cours	se Code	PZO2MC05				
Cours	se Title	Biophysics, Biochemistry and Cytogenetics Lab	o Cours	se		
Credi	ts	03				
Hours	s/Week	06				
Categ	ory	Major Core (MC) - Lab				
Semes	ster	II				
Regul	ation	2022				
1. 2. 3. 4. Cours 1. 2. 3. 4.	molecular In this co organelles We will d and struct In this cou se Objectiv To unders To know To To apply	m of the course is to give hands-on experience on tools and techniques used in alar biology, genetics and biochemistry. course, we will perform different methods of isolation and purification of cell lles, nucleic acids, biomolecules etc. ll demonstrate various experiments to understand various biological processes uctures. course, we will perform experiments to study enzyme kinetics.				
	1	Basic knowledge of physics, chemistry and Bio SYLLABUS	05			
Unit		Content	Hrs	COs	Cognitive Level	
I	SeparationTechniques:Permeabilitytestusingerythrocytes, Analysis of erythrocyte membrane lipidsCO2K4, K5, K6usingThinLayerChromatography.Differentialcentrifugation of cell organelles and identificationCO5CO5mitochondrial fractions:Isolation and partialpurificationCO5					
II	Spectroph Buffer pro	istry (Quantification of biomolecules) notometry - Beer's and Lambert's laws. eparation and determination of pH. and Estimation of Glycogen from liver	18	CO1 CO2 CO3 CO4	K1, K2, K3, K4, K5, K6	

	Quantitative estimation of glucose, protein,		CO5	
	holestoerol and triglycerides. Urea and creatinine in		005	
	he serum of goat.			
	Biochemistry (Enzyme analysis)	18	CO1	K1, K2, K3,
		10		
	solation, Purification and enzyme kinetic studies of		CO2	K4, K5, K6
	Amylase, Acid phosphatase and Alkaline phosphatase of		CO3	
	at kidney or liver. Urease from plant seeds. Separation		CO4	
	f amino acids and sugars by paper Chromatography.		CO5	
	eparation of lipids by TLC. Separation of plant			
-	igments by column chromatography.			
	Cytogenetics	18	CO1	K1, K2, K3,
	Chromosome Preparation: Metaphase chromosome		CO2	K4, K5, K6
-	reparation from mouse bone marrow cells/ fish gill cells		CO3	
-	- Karyotyping – Squash preparation of cockroach/		CO4	
g	rasshopper testis/ mouse and observation of meiotic		CO5	
st	tages using plant/animal serum. Allele frequency and			
g	ene mapping. Study of Mendelian traits in man.			
D	Demonstrate Mendelian laws of segregation and			
ir	ndependent assortment using chi square and ANOVA.			
V N	Aorphology and sex identification, mutants in	18	CO1	K1, K2, K3,
L	Drosophila. Mounting of salivary glands of		CO2	K4, K5, K6
L	Drosophila/Chironomous larva for observing giant		CO3	
c	hromosomes with banding and balbiani rings.		CO4	
D	Demonstration of bacterial conjugation and mutation		CO5	
u	sing mutagens.			
Suggeste	ed Readings			
1. A	Ambika Shanmugam. (1974). Fundamentals of Biochemis	stry for	Medica	l Studies.
S	econd Edition, Aries Agencies, Chennai.			
2. D	Durairaj, G. (1998). A Laboratory Manual in Genetics. Em	erald,	Chennai	
3. G	Gasque, E. (1992). A Manual of Laboratory experiments in	Cell B	iology. U	Jniversity
0	f Wisconsin, Brown.			
4. G	Geddes, L.A. (1972). Electrodesand the measurement of	bioele	ctric eve	ents, John
V	Viley & Sons Ltd. New York.			
5. H	Iall, D & S. Kawkins (1975). A Laboratory Manual of	Molecu	ılar Cell	Biology,
E	English University, London.			
6. Ja	ay L. Nadeau (2011). Introduction to experimental biophy	vsics. E	Biologica	l methods for
	hysical scientists, 2nd Ed. CRC Press, USA.		-	

- 7. Lehninger, A. L.(2006). Biochemistry, Freeman, New York.
- 8. Rajan, S. & Selvi Christy, R., (2001). Experimental procedure in Life sciences, 1st edition, Anjanaa book house, Chennai.
- West Edward Staunton, Todd Wilbert R. Mason Howard, S. & Bruggen John T. Van. (1974). Textbook of biochemistry Amerind Publishing Co. Pvt. Ltd, New Delhi.

- 1. https://www.vlab.co.in/
- 2. https://bit.ly/3rUz0pQ
- 3. https://bit.ly/3GWuVFX
- 4. http://www.pathology.washington.edu/research/cytopages/

Prepared by : Dr. Renilda Sophy A. J

COs	CO Description	Cognitive Level
CO1	To understand the separation techniques of biomolecules.	K1, K2
CO2	To correlate the quantity and functions of different biomolecules.	К3
CO3	To analyze the characteristics of cellular organelles and cellular compounds.	K4
CO4	To explain the principle of tools and techniques used to study cell and cellular organelles	K5
CO5	To demonstrate the functions of biomolecules and display cellular organelles.	K6

Cours	e Code PZO3MC01						
Cours	e Title Comparative Animal Physiology						
Credi	its 04						
Hours	s/Week	04					
Categ	ory	Major Core (MC) - Theory					
Semes	ster	III					
Regul	ation	2022					
To und influer origina differe 1. 2. 3.	 Course Overview To understand how invertebrate and vertebrate animals work and how these animals' biology is influenced by the different environments of their niches. The students will be able to explore an original query in animal physiology and evolutionary changes and environmental adaptations in different taxa of invertebrates and vertebrates. Course Objectives Comparative Animal Physiology' helps understand how animals work at all levels, ranging from individual cells to the whole integrated organism. The scope of physiology includes elucidation of the structure and function of all cells in all organs. To classify and organize the all animals related to nervous, respiratory, circulatory and other physiological systems. This course analyze and differentiate the modifications/adaptations found in different physiological systems of various organisms across the animal kingdom. To integrate and prescribe the animal physiology and environment adaptation for lower 						
Duono		r animals. Basic knowledge about invertebrate and vertebr	ata ani	mala			
Trere	quisites	SYLLABUS	ate dill	mais.			
Unit		Content	Hrs	COs	Cognitive Level		
Ι	Nutrition adsorptio digestive digestion different the envir	 and Excretion nutrients - digestion in different organisms. n of proteins, carbohydrates and lipids. Role of gland and gastrointestinal hormones in Effect of starvation. Excretion - Excretion in organisms, excretory product in relation to comment - physiology of excretion in Man, structure of Nephron, Urine formation and 	12	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		

	concentration in Henle's loop, regulation of water			
	balance.			
		1.1		
II	Internal Transport and Gas Exchange	14	CO1	K1, K2, K3,
	Comparative anatomy of heart, myogenic and neurogenic		CO2	K4, K5, K6
	heart, cardiac cycle, heart as a pump, neural and chemical		CO3	
	regulation. Systems of circulation, Peripheral circulation,		CO4	
	Regulation of heart beat and blood pressure, Transport		CO5	
	and exchange of gases, Composition of blood, plasma			
	function, blood volume and regulation, blood groups,			
	haemoglobin, haemostasis. Comparison of respiration in			
	different species, Neural and chemical regulation of			
	respiration, Gas transfer in air and water, Gas exchangers,			
	respiratory pigments, Circulatory and respiratory			
	responses to extreme conditions, Acid -base balance.			
III	Thermoregulation and Adaptations to Stress	12	CO1	K1, K2, K3,
	Basic concept of environmental stress, acclimation,		CO2	K4, K5, K6
	acclimatization, avoidance and tolerance, stress and		CO3	
	hormones. Osmoregulation- Osmoregulation in aquatic		CO4	
	and terrestrial environments, Extra-renal osmoregulatory		CO5	
	organs. Thermoregulation- thermoregulatory centre of the			
	brain, Heat balance in animals, Adaptations to			
	temperature extremes, torpor, Aestivation and			
	hibernation, Counter current heat exchangers.			
IV	Sensing the Environment & Coordination	14	001	VI VO VO
	Neuroanatomy and integrated function of the nervous		CO1	K1, K2, K3,
	system; Photoreception, Chemoreception,		CO2	K4, K5, K6
	Mechanoreception; Echolocation, Endogenous and		CO3	
	exogenous biological rhythms; Chromatophores- Types		CO4	
	and Functional Modifications vis-a-via different animals		CO5	
	(Invertebrates & Vertebrates) & control;			
	Bioluminescence- Phenomenon dynamics (Luciferin-			
	Luciferase reaction); Occurrence in different groups of			
	animal kingdom, Types (Blue & Red), functional			
	significance and its application in mankind.			

V	Muscle physiology	8	CO1	K1, K2, K3,		
•	Types of muscle, structure, properties, muscle contraction	Ŭ	CO2	K4, K5, K6		
	function & control, Muscle proteins, Muscle adaptations		CO3	11, 110, 110		
	in invertebrates and vertebrates; Insect muscle, Flight		CO4			
	muscle. Electric organs (myogenic lineage) -		CO5			
	Electroplaxes, Electric discharge, Electroception,		005			
	functional significance in animals.					
Sugge	sted Readings					
	Anderson, M., Hill, R. W & Wyse, G. A. (2017).	Anima	l Physic	ology United		
1.	Kingdom: Oxford University Press.	7 1 11111 a	i inysic	ology. Ollited		
2	Barnes, R. D. (1968) Invertebrate Zoology, 2nd Ed. Saund	lers Ph	iladelph	ia		
	Barnes, R.S.K., Calow, P., Olive, P.J.W., Golding, D.W.		-			
5.	Invertebrates: A New Synthesis. III Edition. Blackwell Sci		pieer, s.	I. (2002) The		
4	Barrington, E J W. (1967) Invertebrate structure and funct		elson Lo	ondon 39		
5.	Boradale, L.A. & Potts, E.A. (1961) Invertebrates: A Ma					
	Asia Publishing Home.					
6.	Goldstein, L. (1977). Introduction to comparative physiolog	gv. Rin	ehart &	Winston, New		
0.	York.	8,7,7,4,4,4				
7.	Hall, J. E & Hall, M. E. (2020). Guyton and Hall Textboo	ok of N	Aedical 1	Physiology E-		
	Book. Netherlands: Elsevier Health Sciences.					
8.	Herkat, P. C., & Mathur, P. N. (1976). Text book of anim	nal phy	ysiology.	S. Chand Co.		
	Pvt, Ltd.	1.	0.			
9.	Hoar, W. S. (1991). General and comparative physiology	. Prent	ice hall	of India, New		
	Delhi.			C .		
10	. Hyman, L H. (1940-67). The Invertebrates, Vol. I-VI. McG	Graw-H	Hill, Nev	v York.		
11	. Jordan, E. L. & Verma, P. S. (2013) Chordate Zoology (14	th edit	ion).			
12	. Marshall, A.J & Williams, W.D. (1995) Text book of Zoo	ology-l	Inverteb	rates. VII Ed.,		
	Vol. I, A.L.T.B.S. Publishers.					
13	. Saxena, R. K. & Sumitra Saxena, S. (2015) Comparative A	Anaton	ny of Ve	ertebrates (2nd		
	edition), Viva Books Pvt. Ltd.					
14	14. Vander, A.; Sherman, J. & Luciano, D.(2003) Human Physiology (9th edition).					
15. Verma, P. S., Tyagi, B. S., & Agarwal, U. V. (2005). Animal physiology. S. Chand and						
company Ltd, New Delhi.						
16	. Weichert, C.K. (1970) Anatomy of Chordates (4th edition)). Mc (Graw Hil	1.		
17	. Wilson, A. (1979). Principles of animal physiology. Macm	nillan P	ublishin	g, Co., Inc.		

- 1. https://www.wiley.com
- 2. https://www.wiley.com
- 3. https://archive.org
- 4. https://www.worldcat.org
- 5. https://www.researchgate.net
- 6. https://open.umn.edu
- 7. https://www.sanfoundry.com
- 8. https://guides.library.illinois.edu

Prepared by : Dr. M. Raja

COs	CO Description	Cognitive Level
CO1	To understand how animals work at all levels, ranging from individual cells to the whole integrated organism.	K1, K2
CO2	To classify and organize animals based on nervous, respiratory, circulatory and other physiological systems (old CO3),	К3
CO3	To analyze and differentiate the modifications/ adaptations found in different physiological systems of various organisms across the animal kingdom (old CO4).	K4
CO4	To integrate and explain the relationship between the animal physiology and environmental adaptations of lower and higher animals.	K5
CO5	To design research plans to elucidate the structure and functions of cells in various organs.	K6

Course Code	PZO3MC02
Course Title	Immunology, Microbiology and Epidemiology
Credits	04
Hours/Week	04
Category	Major Core (MC) - Theory
Semester	III
Regulation	2022

- 1. This course will be able to describe the epidemiology of infectious agents including how infectious diseases are transmitted.
- 2. To provide training in basic laboratory exercises: Microbiology: Basic aseptic techniques and media preparation, spread plate, streak plate gram staining, microbial culture, antibiotic susceptibility testing.
- 3. This course emphasizes interaction of microorganisms in environment and biological systems to various conditions.
- 4. To understand the immunological methods: Serological tests, Basic methods in immunology, routine tests, Western blotting.
- 5. Explain the role of epidemiology in the field of public health.
- 6. To train students in the method of analysis of data and report writing. The information from this course will be subsequently used for planning health interventions.

- 1. To develop the ability to analyse and understand the public health issues and undertake research to enhance evidence-based decision making.
- 2. To apply the knowledge to understand the microbial physiology and to identify the microorganisms.
- 3. To understand the basic epidemiological methods and study designs.
- 4. To understand the status of health and disease at global and national levels.
- 5. To provide a basic knowledge of the immune response, cytokines and immunomodulation, hypersensitivity and allergy and its involvement in health and disease.
- 6. To impart knowledge on ethics of research, including bioethics, ethical use of animals and to developing a research proposal and scientific writing.
- 7. To train the students in community diagnosis.

Pre-requisite:	Basic knowledge in Biology

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive
				Level
Ι	Immunology basics and advances	12	CO1	K1, K2, K3,
	Antigen, antibody: hapten structure, functions and types,		CO2	K4, K5, K6
	immunogens .antigenicity, immunogenicity. Innate and		CO3	
	adaptive immunity. Cells, organs and molecules		CO4	
	involved in immunity. Types of immunity and immune		CO5	
	response. Humoral and cell mediated immune response.			
	Antibodies - types generation of antibody diversity,			
	antibody engineering. Antigen processing and			
	presentation. MHC molecules, complement system, toll			
	like receptors, cell mediated effector function. T and B			
	cells- development, maturation and activation. T and B			
	cell epitopes, cytokines.			
II	Immune response and immunotechniques	14	CO1	K1, K2, K3,
	Immune system disorders: Inflammation,		CO2	K4, K5, K6
	hypersensitivity, autoimmune disease. congenital and		CO3	
	acquired immunodeficiencies. Immune response during		CO4	
	bacteria(tuberculosis), parasite (malaria), viral		CO5	
	(HIV/COVID), malignancy (tumors). Primary and			
	secondary immunodeficiency's with related diseases.			
	Hybridoma technology- production of monoclonal			
	antibodies and its applications. Vaccines - types and			
	various methods in vaccine preparation. Immunization			
	schedule in India. Immunotechniques-ELISA, RIA,			
	Immunoblotting, immunofluorescence,			
	microscopy, immunosensor, immunoprecipitation,			
	flowcytometer.			
III	Microbial world	12	CO1	K1, K2, K3,
	Microbes around us, History and scope of microbiology,		CO2	K4, K5, K6
	Whittaker's five kingdom classification. Microbial		CO3	
	anatomy: cell membrane, cell wall, glycocalyx, flagella,		CO4	
	fimbriae, inclusion, endospore.		CO5	
	Microbial nutrition's and factors affecting the growth of			
	microbes, growth curve, role of microbial metabolism in			
	biosynthesis and growth: primary and secondary			

	metabolites. Microbial mutations. Bergey's manual of						
	systemic bacteriology.						
IV	Study of Microbes	12	CO1	K1, K2, K3,			
	General methods and tools used for studying – bacteria,		CO2	K4, K5, K6			
	virus, fungus. Safety measures while handling		CO3				
	pathogens. Different culture media for microbial		CO4				
	growth/ bacteria, virus, fungus. Applications:		CO5				
	Bioremediation, pharmaceutics, probiotics, food						
	science, pathology etc. Genetically modified microbes,						
	microorganisms and their impact on humans.						
V	Epidemiology	10	CO1	K1, K2, K3,			
	Endemic, epidemic and pandemic. Historical aspects of		CO2	K4, K5, K6			
	epidemiology. Worst epidemic and pandemic conditions		CO3				
	in the past. Epidemiological modelling and public health		CO4				
	assessment. Tools and study design in epidemiology.		CO5				
	Epidemiological traits. Prevention and control of						
	diseases during epidemic conditions, uses, approaches,						
	fields in epidemiology. Epidemiological methods in						
	health management- national and international.						
	Suggested Readings						
	1. Atlas, R. M. (1997). Principles of microbiology	(2nd	ed), Tat	a McGraw Hill			
	(international ed), 1098.		La a a (C(1				
	 Goldsby, R.A., Kindt, T.J. & Kuby, J. (2006) Im Freeman & Co Ltd. 	imuno	logy (6tr	edition). w.H.			
	3. Jawetz, M. & Adelberg (2015) Medical Microbio		77th adi	tion) Ma Grow			
	Hill.	nogy (uon). We Oraw			
	4. Jeffrey C. Pommerville,(2006). Alcamo's fundar	nental	of micr	obiology, Jones			
	and Barlett, Boston.						
	5. Leon, G. (2013). Epidemiology (5th ed). Elsevier	Saund	lers.				
	6. Pelzar, M. J., Chan, E. C. S., & King, N. R. (2002	2). Mie	crobiolog	gy-concepts and			
	applications, McGraw Hill, Jnc, 1. New York.						
	7. Porta, M. (2014). A dictionary of epidemiology.	Dxford	Univers	ity Press.			
	8. Prescott, Harley & Klein's, (2008). Microbiology,	, 7 th ed	ition, Ta	ta McGraw Hill			
	international edition, Page 1-1086.						
	9. Rao, C. V (2005). Immunology, 2nd edition, N	arosa	Publishi	ng House, New			
	Delhi.						

10. Roitt, I. (1997). Essential Immunology, Blackwell Scientific Publications.				
Boston.				
11. Roitt, I., Brostoff, J. and Male, D. (2012) Immunology (8th edition). Wiley.				
12. Ryan & Ray Sherris (2004). Medical Microbiology, 4th Ed. (Eds.), McGraw-				
Hill, ISBN: 0-8385-8529-9.				
13. Schneider, D., & Lilienfeld, D. E. (2015). Lilienfeld's foundations of				
epidemiology, (4 th Edition). Oxford University Press.				
Web Resources				
1. https://onlinelearning.hms.harvard.edu/immunology				
2. https://uscmed.sc.libguides.com				
3. https://libraryguides.mcgill.ca				
4. https://microbiology.columbia.edu				
5. https://libguides.library.usyd.edu.au				
6. https://www.ncbi.nlm.nih.gov				
7. https://libguides.tulane.edu				
8. https://www.journals.elsevier.com				
Prepared by : Dr. V. Pushpa Rani				

COs	CO Description	Cognitive Level
CO1	To understand the pathology of diseases caused by various microorganisms such as bacteria, virus, parasites and fungus.	K1, K2
CO2	To explain the concepts of vaccination, autoimmunity, immunodeficiency, hypersensitivity and related techniques.	К3
CO3	To analyse the immune response in disease control, vaccination, and process of immune interactions.	K4
CO4	To recognize the patters of disease in human population and to list out the control measures.	K5
CO5	To design simple and cheap epidemiological methods in health management.	K6

Course Code	PZO3MC03
Course Title	Toxicology, Pharmacology and Bioethics
Credits	04
Hours/Week	03
Category	Major Core (MC) - Theory
Semester	III
Regulation	2022

- 1. The course briefs the outline of the history, scope, classification of various toxic agents, routes of administration of drugs and their therapeutic effects on various models.
- 2. This course will challenge students to analyze, assess and apply analytical skills, critical thinking skills in handling various toxic substances.
- 3. This course gives a broad overview drug designing, mechanisms of toxicity, and environmental pollutants toxicants on organ system and drug disposition.
- 4. To know the parasympathetic, sympathetic and neuromuscular transmissions and drug that modify their functions.
- 5. Course module is designed to critical study of the code of pharmaceutical Ethics drafted by pharmacy council of India.

Course Objectives

- 1. To provide the scientific basis and principles for a variety of special applications, such as the study of drug actions in the health sciences, the use of drugs as therapeutic agents in medicine or as tools in scientific research, and the development and regulation of pharmaceuticals.
- 2. To highlight the skills of toxicologists who works with materials and chemicals to determine the toxic effects they may have on the environment and/or living organisms.
- 3. To evaluate the principles, processes involved in the mechanism of action, disposition, side effects, drug-drug interactions, and contraindication of the drugs.
- 4. To know effect of agonist and antagonist at receptor sites, determine the relationship between effective dose and lethal dose of drugs.
- 5. To implement good scientific practices for safe handling, measurement and experimentation of biological material, reagents, instruments and devices used in pharmacology and toxicology.

Prerequisites Basic knowledge on Physiology, Cell Biology and Environmental Biology

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive
				Level
Ι	History and branches of toxicology.	12	CO1	K1, K2, K3,
	Introduction to toxicology, branches of toxicology,		CO2	K4, K5, K6
	dosage and time response relationships. Biotic and		CO3	
	abiotic aspects effecting toxicity. Classification of toxic		CO4	
	agents- natural toxins, animal toxins, plant toxins, food		CO5	
	toxins, genetic poisons and chemical toxins. Bio-			
	distribution, biomagnification, biotransformation of			
	xenobiotics- brief introduction to Phase-I and Phase-II			
	reactions.			
II	Drug Designing and Mechanisms of Toxicity	12	CO1	K1, K2, K3,
	Drug Designing, Dose-effect and dose-response		CO2	K4, K5, K6
	relationship- acute toxicity, chronic toxicity reversible		CO3	
	and irreversible effects. Mechanism of Neurotoxicity -		CO4	
	selective vulnerability, sites of neurotoxic action,		CO5	
	Axonopathy, Myelopathy, Immunotoxicity,			
	Genotoxicity. Mechanism of drug-resistance.			
III	Toxic risk assessment and chemotherapy	13	CO1	K1, K2, K3,
	Means of exposures. Impact of toxicants on organism		CO2	K4, K5, K6
	(Direct/ indirect, long term etc.) Toxic risk assessment.		CO3	
	Techniques - bacterial reverse mutation assay, in vitro		CO4	
	toxicology testing, in vivo toxicology testing, comet		CO5	
	assay. LD50, LC50, LC90 determination.			
	Chemotherapy – application, side effects and			
	management.			
IV	General Pharmacology	10	CO1	K1, K2, K3,
	Introduction to pharmacology. Nature and sources of		CO2	K4, K5, K6
	drugs, routes of drug administration. General		CO3	
	anesthetics, drugs acting on CNS, respiratory system,		CO4	
	and blood. Efficacy and toxicity evaluation using		CO5	
	different experimental models, dose-response analysis,			
	margin of safety in pre-clinical development.			

V	Bioethics	13	CO1	K1, K2, K3,
	Drug dependence and abuses, Common laboratory		CO2	K4, K5, K6
	animals and their physiological parameters, factors		CO3	
	affecting the nature and degree of pharmacological		CO4	
	responses; Handling and care of different animals;		CO5	
	Bleeding, different routes of administration of drugs and			
	anaesthetics used in animal research and chemical			
	euthanasia. Humanized mouse model and ethical issues.			
Suggested Readings				

- 1. Arunabha Ray & Kavita Gulati, (2007) Current trends in Pharmacology I.K.International Publishing House Pvt.Ltd.
- 2. Brenner, & Stevens. (2017). Pharmacology (5th ed). Elsevier.
- 3. Budhiraja, R. D. (2011). Elementary pharmacology and toxicology (4th ed). Popular Press Prakashan Pvt, Ltd.
- 4. Casarett and Doulls's 1980. Toxicology: The Basic Science of Poisons.. II (Eds.) Macmillan publishing co., Inc. NY.
- David E. Golan, Armen H. Tashjian & Ehrin J. Armstrong · 2011 Principles of Pharmacology pathophysiologic Basis of Drug Therapy 3rd Edition Wolters Kluwer/Lippincot Williams & Wilkins.
- 6. Duffs, J., & Worth, H. (2006). Fundamental toxicology, RSC publishing.
- 7. Goel, & Parashar. (2013). IPR, biosafety and bioethics (1st ed). Pearson Education.
- 8. Gupta, P. K. (1985). Modern toxicology, II. Metropolitan Book, Co.. (P) Ltd. New Delhi.
- 9. Haley, T. J., & Berndt, W. O. (1987). Handbook of toxicology. Hemisphere Publishing Corporation.
- 10. John A. Timbrell (2009). Principles of Biochemical Toxicology. 4th Edition. CRC Press.
- 11. Klaassen, C. (2007). Casarett and Doull's Toxicology The basic science of poisons. McGraw-Hill.
- 12. Matsumura, F. (1980). Toxicology of insecticides. Plenum Press.
- Raj, G. M., & Raveendran, R. (2019). Introduction to basics of pharmacology and toxicology, 1. General and Molecular Pharmacology: Principles of Drug Action. Springer Publication.
- 14. Rang, & Dale. (2018). Pharmacology (9th ed). Elsevier.
- 15. Salil Bhattacharya., Parantapa Sen & Arunabha Ray (2003). Pharmacology, Reed Elsevier Pvt, New Delhi.
- 16. Singer, P. A., & Viens, A. M. (2008). The Cambridge textbook of bioethics. Cambridge University Press.
- 17. Timbrell, John (2002). Introduction to Toxicology, UK: Taylor and Francis.

18. Williams, P. L., James, R. C., & Roberts, S. M. (2003). Principles of toxicology: Environmental and industrial applications. John Wiley & Sons, Inc.

Web Resources

- 1. https://pharmtox.utoronto.ca
- 2. https://www.toxicology.org
- 3. https://www.asmalldoseoftoxicology.org
- 4. https://www.tandfonline.com
- 5. https://www.niehs.nih.gov
- 6. https://www.med.unc.edu
- 7. https://onlinelearning.hms.harvard.edu/pharmacology
- 8. https://www.asmalldoseoftoxicology.org

Prepared By : Dr. M. Balachandar

COs	CO Description	Cognitive Level
CO1	To understand and recall the basic principles of toxicology with emphasis on toxic chemicals, pollutants, and basic drug over dosage scenarios.	K1, K2
CO2	To correlate types of toxins and their physiological and genetic effects.	К3
CO3	To analyze the mechanisms by which drugs alter biological systems in an attempt to improve health and alleviate disease.	K4
CO4	To evaluate the potential of chemotherapy and toxic risk assessment for a healthier society.	K5
CO5	To design experiments using animal models to provide valid solutions for the betterment of society.	K6

Course Code	PZO3MC04				
Course Title	Computational Biology				
Credits	03				
Hours/Week	03				
Category	MC				
Semester	III				
Regulation	2022				
Course Overvie	W				
1. Computational Biology is an interdisciplinary subject integrating the fields of computer					
science, molecular cell biology, biochemistry and statistics.					
2. The aim of the course is to give basic knowledge about how to store, analyze					
interpret biological data.					
3. The different units of the course will examine different areas of computational biological biolo					
including how to use private and public data bases in phylogenetic studies, retriev					
sequences from data, compare sequences etc.					
4. In this course, we will discuss about the tools and techniques used in genomics and					
proteomics and learn the methods of docking which help in drug designing.					
Course Objectiv	ves				
1 To understand the applications of biological data bases					

- 1. To understand the applications of biological data bases.
- 2. To know how to use different computational tools to store, retrieve and analyze data.
- 3. To apply the knowledge of computational biology for analyzing the structure of biomolecules.
- 4. To use different computational programs for phylogenetic analysis and docking methods for drug designing.

Prere	Prerequisites Basic knowledge of computer science and Biology						
	SYLLABUS						
Unit		Content	Hrs	COs	Cognitive		
Ι	Basic bio	ological computing tools	9	CO1	Level K1, K2, K3,		
	Significa	nce of computational biology in research and	-	CO2	K4, K5, K6		
		a; Basic components - Hardware (CPU, input, storage devices) and Software (operating		CO3 CO4			
	-	Introduction to MS Excel - in-built statistical		CO5			
		, graphical tools in MS Excel for presentation iterature retrieval – PubMed, PubMed Central,					

	Coorne Web of Coirnes Chadhaanaa, Deferring			
	Scopus, Web of Science, Shodhganga; Reference			
	management software like Mendeley, Endnote, Zotero,			
	Google Scholar.			
II	Biological databases	9	CO1	K1, K2, K3,
	Types of biological databases – primary, secondary and		CO2	K4, K5, K6
	composite databases; Nucleic acid sequence and		CO3	
	structural databases - NCBI, DDBJ, EMBL, ExPASy,		CO4	
	CSD, Nucleic acid database (NDB); Protein sequence		CO5	
	and structural databases - UniProt, PDB, MMDB;			
	Chemical and drug databases - PubChem, ChEMBL,			
	DrugBank; Specialized databases - FlyBase, ACeDB,			
	dbSNP, TIGR, OMIM, OBIS-SEAMAP, Earthworm			
	Database of India; Zoological Information Management			
	System (ZIMS); Barcode of Life Data Systems (BOLD);			
	Kyoto Encyclopedia of Genes and Genomes (KEGG).			
III	Tools for sequence analysis	9	CO1	K1, K2, K3,
	Tools for gene and genome annotation; Gene prediction		CO2	K4, K5, K6
	- steps in gene prediction, methods of gene prediction,		CO3	
	gene prediction tools; Sequence alignment – Types of		CO4	
	sequence alignment; Pairwise sequence alignment tools;		CO5	
	BLAST – Sequence formats accepted by BLAST,			
	Alignment method, types of BLAST; Multiple sequence			
	alignment (MSA) – Steps in multiple sequence			
	alignment, Heirachical MSA in Clustal Omega; MSA			
	visualization in JalView; Significance of multiple			
	sequence in phylogenetic tree construction;			
	Phylogenetic tree construction – Types of trees,			
	interpretation of trees, methods of tree construction –			
	distance based and character based methods; PHYLIP;			
	Tree of Life web project.			
IV	Tools for structural analysis and drug design	9	CO1	K1, K2, K3,
	Protein structure visualization tools - RasMol, PyMol,		CO2	K4, K5, K6
	Cn3D, MMDB, PDB visualization tools - Mol* 3D		CO3	
	viewer, protein feature view, genome view; Relevance		CO4	
	of pharmacogenetics and pharmacogenomics in drug		CO5	
	design; Computer-aided drug design (CADD) – Drug			
	discovery pipeline and steps in CADD: virtual high-			
	, <u>, , , , , , , , , , , , , , , , , , </u>			

	throughput screening, structure-based and ligand-based drug design, tools for molecular modelling, target prediction, docking and toxicity studies.			
V	Novel computational approaches in biology	9	CO1	K1, K2, K3,
	Computational ecology - ecological modelling,		CO2	K4, K5, K6
	predictions and biodiversity studies; Computational		CO3	
	medicine - disease diagnosis, therapy and patient care.		CO4	
	Use of artificial intelligence in medicine, climate change		CO5	
	and conservation biology. Role of bioinformatics in			
	global collaborative genome sequencing and			
	environmental projects.			

Suggested Readings

- 1. Barnes, M. R., & Gray, I. C. (2003). Bioinformatics for geneticists, Wiley.
- 2. Cynthia, G., & Jambeck, P. (2001). Developing bioinformatics computer skills, Shroff, Mumbai.
- 3. David, M. (2001). Bioinformatics: Sequence and Genome Analysis Cold Spring Harbor Laboratory Press.
- 4. Gibas, C., & Jambeck, P. (2000). Developing bioinformatics skills, O'Reilly and associates, California.
- 5. Harshawardhan, P. B. (2007). Bioinformatics Principles and applications. Tata McGraw Hill.
- 6. Mount, D. W. (2001). Bioinformatics Sequence and genome analysis. Cold Spring Harbor, NY.
- 7. Rashidi, H., & Buehler, L. K. (1999). Bioinformatics basics applications in biological science and medicine. CRC Press.
- 8. Stephen, A. K., & Womble, D. D. (2003). Introduction to bioinformatics: A theoretical and practical approach. Humana Press.
- 9. Tisdall, J. D. JD. (2001). Beginning PERL for bioinformatics, Shroff, Mumbai.
- 10. Vincent, D. J., & Witten, M. (Eds.). (1996). *Computational Medicine, Public Health and Biotechnology: Building A Man In The Machine-Proceedings of The First World Congress (In 3 Parts)* (Vol. 5). World Scientific.
- 11. Zhang, W. (2010). Computational ecology: artificial neural networks and their applications. World Scientific.
- 12. Zhumur, G., & Bibekanand, M. (2008). Bioinformatics (principles and applications). Oxford University Press.

- 1. https://bit.ly/3JsEpdJ
- 2. https://bit.ly/3GMabR3
- 3. http://www.freebookcentre.net/Biology/BioInformatics-Books.html
- 4. https://www.youtube.com/watch?v=sX4cMu9Azgs
- 5. https://eol.org/
- 6. http://seamap.env.duke.edu
- 7. http://tolweb.org/tree/phylogeny.html

Prepared by : Dr. Renilda Sophy A. J

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To understand the tools and techniques used in biological data analysis.	K1, K2
CO2	To explore information stored in major database and compare with the different biological data.	К3
CO3	To analyze database and predict protein and gene sequences	K4
CO4	To correlate between information in database and predict the evolutionary significance.	К5
CO5	To design new proteins and nucleotide sequences which have applications in different fields.	K6

Cours	se Code	PZO3MC05				
Cours	Course Title Animal Physiology, Microbiology and Immunology Lab Course					
Credi	Credits 03					
Hours	s/Week	06				
Categ	ory	Major Core (MC) – Lab				
Semes	ster	III				
Regul	ation	2022				
1. 2. 3. 4.	through la The technic characteri This cours and immu Skills in o great exter	purse paves way for a practical exploration of the various physiological parameters h laboratory experiments. chniques to study and measure physiological, microbiological and immunological teristics are elaborated. ourse will equip learners to pursue research in animal physiology, microbiology munology. in organizing, analyzing and recording experimental data will be emphasized to a extent.				
2.	To under	stand the use of specific techniques and expical, microbiological and immunological parame		ntal set-	ups to study	
3.	To handle interest.	e and analyze environmental samples of physic	ologica		-	
4. Prerec	quisites	experimental data and report and discuss the exp Basic knowledge in Biology or Zoology	berimei	ital resu	Its accurately.	
	quisites	SYLLABUS				
Unit		Content	Hrs	COs	Cognitive	
		Content	111.5	005	Level	
Ι	Effect of t Effect of lactic acid	environment on physiology emperature on the respiratory rate of fish. decreasing oxygen availability on the muscle content of fish. Effect of posture and exercise pressure and heart rate in humans.	18	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6	

	Effect of adrenalin, acetylcholine and aspirin on the heart			
	beat of <i>Daphnia</i> sp.			
II		18	CO1	K1, K2, K3,
11	Markers of physiological changes on toxin exposure	10	CO1 CO2	K1, K2, K3, K4, K5, K6
	Assay of brain acetylcholinesterase on exposure of fish to			K4, KJ, KO
	pesticides or any other pollutants.		CO3	
	Influence of sub lethal (50-60 ppm) ammonia (as liquor		CO4	
	ammonia/ ammonium hydroxide/ ammonium chloride)		CO5	
	on a suitable fish exposed to ammonia stress for 7 days			
	with reference to the following parameters:			
	• Level of excretory ammonia			
	• Level of amino acid content of muscle, gill, brain			
	and liver.			
III	Homeostasis, physiological and histological	18	CO1	K1, K2, K3,
	parameters		CO2	K4, K5, K6
	Estimation of salt loss and salt gain in fish exposed to fresh		CO3	
	water and sea water. Comparative study of digestive		CO4	
	enzymes in carnivorous (shark) and omnivorous (nile		CO5	
	tilapia) fishes. Assay of enzyme markers of liver function			
	(alanine aminotransferase, aspartate aminotransferase,			
	acid phosphatase and alkaline phosphatase) in chicken			
	liver sample.			
	Study and identification of normal and abnormal			
	electroencephalography (EEG) and echocardiography			
	(ECG) waveforms using photographs.			
	Histological observations using permanent slides of testis,			
	ovary, spleen, liver, thyroid gland, pancreas, muscles,			
	cartilage, bone, stomach, oesophagus, duodenum, kidney,			
	spinal cord, pituitary, parathyroid, adrenal gland.			
IV	Basic microbiological techniques	18	CO1	K1, K2, K3,
	Preparation of nutrient agar slant, stab streak, pour and		CO2	K4, K5, K6
	spread plate cultures. Serial dilution of environmental		CO3	
	bacterial samples and plating to establish viable bacterial		CO4	
	cell count. Establishment of pure bacterial cultures from		CO5	
	environmental samples. Selective growth of amylase-			
	producing bacteria on starch agar plate.			

V	Bacterial characterization and immunotechniques	18	CO1	K1, K2, K3,
	Simple staining, negative staining and Gram staining of		CO2	K4, K5, K6
	bacterial smears. IMViC test for identification of the		CO3	
	bacteria. Double immunodiffusion and Radial		CO4	
	immunodiffusion Rocket immunoelectrophoresis		CO5	
	Competitive ELISA			

Suggested Readings

- 1. Chess, B. (2019). Laboratory applications in microbiology: A case study approach. McGraw-Hill Education.
- 2. Erkmen, O. (2021). Laboratory practices in microbiology. Elsevier Science.
- 3. Hay, F. C., & Westwood, O. M. (2008). Practical immunology. John Wiley & Sons.
- 4. Maheshwari, D. K. (2002). Practical microbiology, S. Chand Pvt. Ltd.
- 5. Mali, R. P., & Afsar, S. K. (2015). A practical manual on innovative animal physiology. Oxford Book Company.
- 6. Mondschein, W., Pollack, R. A., Findlay, L., & Modesto, R. R. (2018). Laboratory exercises in microbiology. Wiley.
- 7. Parvathi, K., Karthegaa, J., & Sivakumar, P. (2021). A manual of practical zoology. Darshan Publishers.
- 8. Pawar, K. R., & Desai, A. E. (2019). Practical course in zoology. Nirali Prakhashan.
- 9. Pommerville, J. C. (2017). Laboratory fundamentals of microbiology. Jones and Bartlett Publishers Learning, LLC.
- 10. Roy, A. K., & Prasad, M. M. (2009). Laboratory manual of microbiology. New India Publishing Agency.
- 11. Saxena, J., Baunthiyal, M., & Ravi, I. (2015). Laboratory manual of microbiology, biochemistry and molecular biology. Scientific Publishing.
- 12. Verma, P. S., & Srivastava, P. C. (2002). Advanced practical zoology. S. Chand Pvt. Ltd.
- 13. Wallis, C. J. (2015). Practical zoology: For advanced level and intermediate students. Elsevier Science.
- 14. Zane, H. D. (2001). Immunology: theoretical & practical concepts in laboratory medicine. Saunders.

Web Resources

- 1. https://practicalbiology.org/control-and-communication/control-of-heartrate/investigating-factors-affecting-the-heart-rate-of-daphnia
- 2. https://www.ronaldschulte.nl/files/Laboratory_manual_in_general_microbiology.pdff
- 3. http://www.cuteri.eu/microbiologia/manuale_microbiologia_pratica.pdf
- 4. https://www.youtube.com/watch?v=aDU4GpKLF8Q

5. https://www.youtube.com/watch?v=HhOUwlOdxkA

Prepared By : Dr. M. D. Anitha Sebastian

CO – Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	To describe and to examine physiological and immunological changes in animals and the characteristics of microbes.	K1, K2
CO 2	To employ the use of specific techniques and experimental set- ups to study physiological, immunological and microbiological parameters and to associate the observations with the theoretical background.	К3
CO 3	To experiment with environmental samples of physiological, immunological and microbiological interest and to analyze them appropriately.	K4
CO 4	To assess the changes in physiological and environmental parameters that affect animals and microbes and to predict and justify the consequences of those changes.	К5
CO 5	To compile experimental data and to report and validate the experimental results accurately.	K6

Course Code	PZO4MC01
Course Title	Methods in Biology
Credits	05
Hours/Week	05
Category	Major Core (MC) – Theory
Semester	IV
Regulation	2022

Course Overview

- 1. The course highlights on a variety of current experimental techniques used in modern biology and also exploring advanced topics in molecular biotechnology.
- 2. This course will challenge students to equip, analyze and apply critical thinking skills to their readings, class activities and field biology exercises.
- 3. This course gives a broad overview of the foundations and applications of different molecular techniques widely used in Genetics, Biochemistry and Molecular Biology.
- 4. Course module is designed to learn various techniques like estimation methods, Immunological assays, microbial and molecular techniques.

Course Objectives

- 1. To understand the principles and use of modern biological techniques, research methods. Utilize skills relating to the process of conducting life sciences methods.
- 2. To acquire the skills of using biomolecules for the experimental assessment of biological problems in the areas of molecular diagnosis.
- 3. To implement good scientific practices for safe handling, measurement and experimentation of biological material, reagents, instruments and devices used in modern biology.
- 4. To interpret and evaluate the principles, processes involved in Molecular Biology and Recombinant DNA methods.
- 5. To use research-based knowledge including design of experiments, analysis and interpretation of data to provide valid solutions to society.

Prerequisites	Basic knowledge on Molecular Biology, Cell Biology and Biotechnology
---------------	--

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive Level		
Ι	Microscopic techniques	15	CO1	K1, K2, K3,		
	Good laboratory practices. Preparation of common		CO2	K4, K5, K6		
	laboratory reagents and buffers. Microscopes - Confocal		CO3			
	microscopy, Atomic Force microscope, Scanning		CO4			
	tunneling microscope, Scanning and transmission		CO5			
	microscopes, different fixation and staining techniques for					
	EM. Image processing methods in microscopy.					
II	Analytical techniques	20	CO1	K1, K2, K3,		
	Detection of molecules using ELISA, RIA, western blot,		CO2	K4, K5, K6		
	immune precipitation, flow-cytometry,		CO3			
	immunofluorescence, in situ localization by techniques		CO4			
	such as FISH and GISH. Protein sequencing methods,		CO5			
	detection of post translation modification of proteins.					
	Types of PCR. DNA sequencing methods - Sanger and					
	next generation sequencing, RFLP, RAPD and AFLP					
	techniques.					
III	Isolation and purification methods	14	CO1	K1, K2, K3,		
	Isolation and purification of RNA, DNA (genomic and		CO2	K4, K5, K6		
	plasmid) and proteins, different separation methods.		CO3			
	Analysis of RNA, DNA and proteins by one and two		CO4			
	dimensional gel electrophoresis. Isolation, separation and		CO5			
	analysis of carbohydrate and lipid molecules. Isolation and					
	purification of antibodies.					
IV	Radiolabelling Methods	13	CO1	K1, K2, K3,		
	Basics of Radioactivity, Commonly used radioisotopes in		CO2	K4, K5, K6		
	Biology, Incorporation of Radioisotopes in Biological		CO3			
	Systems, Molecular Imaging and measurement of		CO4			
	Radioactivity. Nuclear medicine-Internally administered		CO5			
	radioisotopes. Radio iodine in thyroid function analysis.					
	Renal, liver and lung function analysis. Safety guidelines.					
V	Field biology methods	13	CO1	K1, K2, K3,		
	Introduction to field Biology, Methods of estimating		CO2	K4, K5, K6		
	population density of animals and plants, ranging patterns		CO3			

	through direct, indirect and remote observations.		CO4				
	Sampling methods. Identification of species using		CO5				
	barcoding.						
Suggested Readings							
1 1	1 Andreas II & Served C (2018) Wilson and Walker's principles and technismes of						

- 1. Andreas H & Samuel C. (2018). Wilson and Walker's principles and techniques of biochemistry and molecular biology (8th ed). Cambridge University Press.
- 2. Bajpai, P. K. (2010). Biological instrumentation and methodology. Publisher S Chand and company.
- 3. Ignacimuthu, S. (2002). Methods in biotechnology. Phoenix. New Delhi.
- 4. Jain, H. C (1994). Radiation and Man. National Book trust, India.
- 5. Kiefer, J. (2004). Life sciences and radiation. Springer.
- 6. Plummer, D. (2017). An introduction to practical biochemistry (3rd ed). McGraw-Hill.
- 7. Primrose, S. B., & Twyman, R. M. (2006). Principles of gene manipulation and genomics (7th ed). Blackwell Publishing, West.
- 8. Saha, G. B. (2006). Physics and radiobiology of nuclear medicine, (3rd ed), Springer.
- 9. Schmauder, H. P., & Scjweozer, M. (2002). Methods in biotechnology. Taylor & Francis.
- 10. Steve Forshier. (2008). Essentials of radiation biology and protection. (2nd ed). Cengage Learning.
- 11. Upadhyay (2016). Biophysical chemistry: Principles and techniques. Himalaya Publishing House.
- 12. Williams, B. L., & Keith Wilson, A. (1981). Biologist guide to principles and techniques of practical biochemistry, (2nd ed). Hodder.
- 13. Wilson, K., & Walker, J. (2010). Experimental biochemistry. Cambridge University Press.
- 14. Wilson, K., & Walker, J. (2018). Principles and techniques of biochemistry and molecular biology (8th ed). Cambridge University Press.

- 1. https://ucsd.libguides.com
- 2. https://libguides.humboldt.edu
- 3. https://www.ableweb.org
- 4. https://subjectguides.lib.neu.edu
- 5. https://www.khanacademy.org
- 6. https://www.omicsonline.org
- 7. https://www.cellbio.com
- 8. https://libguides.princeton.edu

Prepared By : Dr. M. Balachandar

COs	CO Description	Cognitive Level
CO1	To understand the principle and procedure of modern techniques in biology.	K1, K2
CO2	To perform and interpret the results of widely used molecular biology techniques.	К3
CO3	To analyze and apply the outcomes of molecular techniques in exploring the functioning of cells.	K4
CO4	To explore modern molecular techniques and compile their applications in different fields of industry, agriculture and medicine.	K5
CO5	To formulate and compile new methods for isolation, purification and analysis of biomolecules.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Cours	se Code	PZO4MC02			
Cours	se Title Genetic Engineering				
Credi	Credits 04				
Hours	s/Week	04			
Categ	ory	MC			
Semes	ster	IV			
Regul	ation	2022			
1. 2. Cours 1. 2.	 se Overview This course gives insight into the functioning of Recombinant DNA molecules, their constructions, analysis and fine tuning. This course also gives various ideas and approaches for development of drugs and other medicinal needs. se Objectives To understand how recombinant molecules are created analysed with respect to DNA, RNA, and Protein. To monitor both in-vitro and in-vivo activity especially functioning of Recombinant DNA molecules, their constructions, analysis and fine tuning. To suggest more rational approach to solve problem of a living system at a molecular level. 				
	quisites	op and formulate the Insulin and Blood clotting fa Knowledge of Biochemistry, Microbiology, Mo			
	-	SYLLABUS			
Unit		Content	Hrs	COs	Cognitive Level
Ι	gene or	tion on to nucleic acids. Prokaryotic and eukaryotic ganization. Central Dogma. Overview of ant DNA technology – tools and techniques.	10	CO1 CO2 CO3 CO4 CO5	K1, K2,K3, K4, K5, K6
II	Restrictio sticky end transcript	and markers for Recombinant Technology n Endonucleases (Classification, blunt end, d, mode of action). DNA polymerases, Reverse ase, Polynucleotide kinase, Terminal e, Alkaline phosphatase, S1-Nuclease, Bal-31,	14	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6

	DNA ligase. Reporter genes, selectable and scorable					
	markers, prokaryotic and eukaryotic markers (lacZ, CAT,					
	Gus, GFP,cre-loxP system, sac B system, npt II gene,					
	luciferase gene, dhfr gene, herbicide resistance gene).					
III	Vectors	12	CO1	K1, K2,K3,		
	Cloning and expression vectors. Plasmids- Basic features		CO2	K4, K5, K6		
	classification, size and copy number, conjugation &		CO3			
	compatibility. Plasmids, Bacteriophages (Lambda and		CO4			
	M13 type), Cosmids and Phagemids, plant and animal cell		CO5			
	vectors. Library construction (Genomic and cDNA type)					
	and Screening of clones. Foreign gene expression in E.					
	coli, Fusion proteins. Purification of recombinant proteins.					
IV	DNA transfer and gene manipulation	12	CO1	K1, K2, K3,		
	Gene transfer techniques – physical, chemical and		CO2	K4, K5, K6		
	biological – Transformation, Transfection, Membrane		CO3	,,		
	Fusion, Electroporation, Gene-Gun and Micro-injection.		CO4			
	In vitro mutagenesis and deletion techniques, gene knock		CO5			
	out in bacterial and eukaryotic organisms. Gene editing.					
	Cloning by somatic cell nuclear transfer.					
V	Applications of rDNA	12	CO1	K1, K2,K3,		
	Antisense and RNA interference technology and their		CO2	K4, K5, K6		
	applications. rDNA in medicine, agriculture, food industry		CO3			
	and environmental sciences. Gene therapy. Transgenic		CO4			
	plants and animals. Ethical issues and regulations related		CO5			
	to rDNA technology.					
Sugge	sted Readings					
00	Alberts, B (2004). Molecular Biology of the Cell. Garland	d Publi	cations.	USA.		
2.			,			
	Brown, T. A. (2001) Gene Cloning & DNA analysis: An Introduction. Blackwell					
	Publishing.					
4.	. Carroll S.B., Doebley J., Griffiths, A.J.F. & Wessler, S.R. (2018) An Introduction to					
	Genetic Analysis. W. H. Freeman and Co. Ltd.		-,			
5	Gardner, E.J., Simmons, M.J & Snustad, D.P. (2008).	Princip	oles of	Genetics (8 th		
	Edition) Wiley India.					
6.	Nicholl, D.S.T. (2008). An introduction to Genetic Enginee	ering (3	rd editio	n) Cambridge		
0.	It is a b					

University Press.

- Peter J. Russell (2009) iGenetics, A molecular approach. (3rd Edition). Benjamin Cummings.
- 8. Primrose, S.B. & Twyman, R. (2006) Principles of Gene manipulation and Genomics (7th edition) Blackwell Publishing.
- 9. Primrose, S.B., Twyman, R. & R.W. Old (2004). Principles of Gene Manipulations (Sixth edition) Blackwell Science.
- 10. Watson, J.D. (2006) Recombinant DNA (3rd edition) Cold Spring Harbor Laboratory Press.
- 11. William S Klug & Michael R Cummings. (2016). Concepts of Genetics. (10th Edition). Pearson Education India.

- 1. https://libguides.northwestern.edu
- 2. https://www.teachengineering.org
- 3. https://le.ac.uk
- 4. https://library.ship.edu
- 5. https://www.edx.org
- 6. https://www.udemy.com
- 7. https://www.classcentral.com
- 8. https://www.genome.gov
- 9. https://onlinelearning.hms.harvard.edu

Prepared By : Dr. K. Thresia Mathews

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To understand how recombinant molecules are created analysed with respect to DNA, RNA, and Protein.	K1, K2
CO2	To compare the various instruments and molecular methods used in genetic engineering.	К3
CO3	To monitor the construction of recombinant DNA molecules and fine tuning of genetic material and to analyze their function.	K4
CO4	To compile the applications of rDNA technology in various fields.	К5
CO5	To develop and formulate new biomolecules having application in industry, agriculture and health sectors.	K6

PZO4MC03
Methods in Molecular Biology Lab Course
06
06
Major Core (MC) - Lab Course
IV
2022
-

Course Overview

- 1. This course will challenge students to apply critical thinking skills to their readings, class activities, laboratory exercises and to gain an in-depth knowledge on applied molecular techniques.
- 2. This course gives a broad overview of the foundations and applications of different techniques widely used in Genetics, Biochemistry and Molecular Biology.
- 3. Course emphasis on a variety of current experimental techniques used in modern biology and also exploring advanced topics in molecular biotechnology.
- 4. Course module is designed to learn various laboratory techniques like estimation methods, microbial techniques, chromatography techniques, nucleic acid isolation and analysis, protein purification methods, primer design and Immunological assays.

Course Objectives

- 1. To identify the fundamental aspects of molecular biology techniques.
- 2. To acquire the skills of using biomolecules for the experimental assessment of biological problems.
- 3. To implement good scientific practices for Safe handling, measurement and experimentation of biological material, reagents, instruments and devices used in Biology.
- 4. To understand the essential facts, concepts, physical and chemical principles of molecular techniques and their applications in the areas of molecular diagnosis.
- 5. To Interpret and evaluate the process and standard laboratory experimental protocols involved in analytical tasks.

Prerequisites Basic knowledge in Molecular Biology, Cell Biology and Biotechnology

SYLLABUS					
Unit	Content	Hrs	COs	Cognitive	
				Level	
Ι	Isolation And Purification Techniques	18	CO1	K1, K2, K3,	
	• Protein purification by gel filtration/ion		CO2	K4, K5, K6	
	exchange chromatography.		CO3		
	• Isolation and partial purification of amylase from		CO4		
	sweet potato by ammonium sulphate		CO5		
	fractionation and dialysis.				
	• Synthesis of nanoparticles and size analysis.				
II	Molecular Analysis	18	CO1	K1, K2, K3,	
	• Isolation of RNA and DNA and quantification.		CO2	K4, K5, K6	
	• Agarose gel electrophoresis of isolated DNA of		CO3		
	quantitative and qualitative estimation.		CO4		
	• Perform Southern blotting for DNA analysis		CO5		
	• Isolation of protein from the given sample.				
	• Separation of protein by SDS-PAGE.				
	• To perform western blotting for qualitative				
	estimation of protein.				
III	Genetic Engineering	18	CO1	K1, K2, K3,	
	• Isolation of bacterial/ plasmid DNA		CO2	K4, K5, K6	
	• Determining the purity of isolated		CO3		
	genomic/plasmid DNA using UV-Vis		CO4		
	spectrophotometer.		CO5		
	• PCR and analysis of PCR amplified DNA.				
	• Gel elution of expected size PCR amplicons.				
	• Cloning of gel eluted amplicons in suitable				
	vector.				
	• Analysis of cloned product by Restriction				
	analysis.				
IV	Animal cell culture	18	CO1	K1, K2, K3,	
	• Sterilization of equipment used in animal tissue		CO2	K4, K5, K6	
	culture laboratory and laboratory practices.		CO3		
	• Primary culture chick cardiac myocytes or skin		CO4		
	fibroblasts		CO5		

	• Cell viability testing using trypan blue dye/ MTT					
	assay					
	• Cell cloning by dilution method.					
	• Sub culturing/splitting of monolayer culture.					
	Cell migration assay					
V	Institutional and Industrial visit	18	CO1	K1, K2, K3,		
	• Electron microscopes.		CO2	K4, K5, K6		
	Atomic Force microscope.		CO3			
	• DNA sequencer.		CO4			
	• XRD.		CO5			
	• Laser scanning confocal microscope.					
	• Flow cytometry.					
	• HPLC.					
	• Mass spectrophotometry.					
Sugge	sted Readings					
1.	Bajpai P.K. (2010). Biological Instrumentation & Method	dology	. S Chane	d & Company.		
2.	Boyer, R. (2000) Modern Experimental Biochemist	ry (31	d editio	on) Benjamin-		
	Cummings. Pearse, A.G.E. (1980-1993) Histochemis	try - '	Theoretic	cal & applied,		
	Volume I-III, Churchill-Livingstones					
3.	Green, M. R & Sambrook, J. (2012) Molecular Clonin	g: a La	aboratory	Protocol (4th		
	edition) CSHL Press.					
4.	Hartl DL, Ruvolo M. (2011) Genetics – Analysis of Gene	s & Ge	enomes. 8	Sth Student Ed.		
_	Jones & Bartlett.					
5.		Practio	cal Appr	oach. Oxford		
6	University Press, UK.	mister	(2 md ad)	tion) MaCrow		
0.	Plummer, D. (2017) An Introduction to Practical Bioche Hill.	mstry	(5 10 eu	luon) McGraw		
7		es of	Gene M	anipulation &		
7.	7. Primrose, S. B. & Twyman, R. M., (2006), Principles of Gene Manipulation & Genomics, 7th Ed, Blackwell Publishing, West Sussex, UK					
8.	Robert Braun. Introduction to Instrumental Analysis. McGraw Hill International					
	Editions					
9.	Wilson, K. & Walker, J. (2018) Principles & Techniques	Of Bio	chemistr	y & Molecular		
	Biology (8th Edition), Cambridge University Press.					
10	10. Wilson, K.& Goulding K.H., A Biologist Guide to Principles & Techniques of Practical					
	Biochemistry., ELBS Edn.					

- 1. https://ucsd.libguides.com
- 2. https://libguides.humboldt.edu
- 3. https://www.ableweb.org
- 4. https://subjectguides.lib.neu.edu
- 5. https://www.khanacademy.org
- 6. https://www.omicsonline.org
- 7. https://www.cellbio.com
- 8. https://libguides.princeton.edu
- 9. https://www.asbmb.org

Prepared by : Dr. D. Robert Selvam

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To record and recall the basic principles of analytical methods, compare and contrast the working mechanism of modern laboratory instruments.	K1, K2
CO2	To classify and explain the structure and general characteristics of biological samples, formulate the equipment available and identify the appropriate experiments for research.	К3
CO3	To analyze molecular techniques, develop suitable analytical methods for the Isolation, Identification and Quantification of Biomolecules.	K4
CO4	To rank and rate the required laboratory skills to perform, interpret and analyze widely used molecular biology techniques.	K5
CO5	To compile and construct different laboratory techniques to investigate immunological and histological examination.	K6

Course Code	PZO2SE01			
Course Title	Remote Sensing and Bioresource Management			
Credits	02			
Hours/Week	04			
Category	Subject Elective (SE)			
Semester	II			
Regulation	Regulation 2022			
Course Overview				
1. This course will enable students to learn and obtain field data suitable for the various				

- 1. This course will enable students to learn and obtain field data suitable for the various needs of their project
- 2. This course discusses encompass project planning sampling plans suitable for selecting spectral training sites or accuracy assessment sites.
- 3. This course emphasizes on finding locations in the field using a global positioning system obtaining basic measurements for studies of vegetation soil and water
- 4. It focuses on forest, agriculture, soil, land use and human resources, etc. which are considered more essential for environmental planning and development

Course Objectives

- 1. To identify Geo-identity of regions.
- 2. To acquire the skills of using methodology: empirical or Observational Technique.
- 3. To assess problems and formulate objectives in Remote Sensing Field work
- 4. To Interpret and evaluate the importance of bio resources

Prerequisites Basic knowledge on Remote sensing and bio resource management

	SYLLABUS					
Unit	Content		COs	Cognitive		
				Level		
Ι	Remote sensing	12	CO1	K1, K2, K3,		
	Introduction, Aim and Objectives. Geo-identity of		CO2	K4, K5, K6		
	regions; Location and Extent, The Region and The		CO3			
	Problem. Methodology: Empirical or Observational		CO4			
	Technique, Statistical Technique, Remote Sensing		CO5			
	Technique. Preparation of Base Map Analysis and					
	Synthesis of Data. The Geographic Information System					
	(GIS) and Global Positioning System (GPS)-its					
	applications					

II	Physical Background	12	CO1	K1, K2, K3,
	Physical Background: Geology, Relief, Drainage,		CO2	K4, K5, K6
	Climate, Soil and Forests. Landforms, water resources,		CO3	,,
	soil resources and mineral resources. Biotic Resource		CO4	
	system. Agriculture Development		CO5	
III	Field Method in Remote Sensing	12	C01	K1, K2, K3,
	Methods of estimating population density of animals and		CO2	K4, K5, K6
	plants, ranging patterns through direct, indirect and		CO3	,,
	remote observations, sampling methods in the study of		CO4	
	behavior, habitat characterization: ground and remote		CO5	
	sensing methods. Problems and Objectives in Remote			
	Sensing Field work sampling methods in the study of			
	behavior, habitat characterization: ground and remote			
	sensing method. Field Spectroscopy. Collecting			
	Thematic Date in the Field. Applying Concepts of Field			
	Work to Urban Projects			
IV	Bioresources Utilization	12	CO1	K1, K2, K3,
	Bioresource and uses of biodiversity. Bioremediation		CO2	K4, K5, K6
	and phytoremediation Biosensors. Utilization of Natural		CO3	
	Resources (Water, Soil and Climate). Ecosystem		CO4	
	structure; ecosystem function; energy flow and mineral		CO5	
	cycling (C,N,P); primary production and			
	decomposition; structure and function of some Indian			
	ecosystems: terrestrial (forest, grassland) and aquatic			
	(fresh water, marine, eustarine). Utilization, Household			
	Industry and other Services of Food and other Crops.			
	Utilization of Human Resources (Agriculture)			
V	Bio Resources Conservation and Management	12	CO1	K1, K2, K3,
	Management of Water, Energy and Bioresources in the		CO2	K4, K5, K6
	Era of Climate Change: Emerging Issues and		CO3	
	Challenges Conservation of BioResources: Forest,		CO4	
			007	
	Soil and Water sted Readings		CO5	

1. Adams, J. B., & Gillespie, A. R. (2006). Remote sensing of landscapes with spectral images: A physical modeling approach. Cambridge University Press.

2. Campbell, J. B. (2002): Introduction to Remote Sensing. (5th edition). Taylor and Francis, London

- Cracknell, A. & Hayes, L. (1990): Remote Sensing Year Book, Taylor and Francis, London
- 4. Curran, P.J. (1985): Principles of Remote Sensing, Longman, London.
- 5. Deekshatulu, B.L. & Rajan, Y.S. (ed.) (1984) Remote Sensing. Indian Academy of Science, Bangalore.
- Ghosh, S.K. & Singh, R. (2003). Social forestry and Forest Management. Global Vision Pub.
- 7. Guham, P. K. (2003): Remote Sensing for Beginners. Affiliated East-West Press Private Ltd., New Delhi.
- 8. Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation. John Wiley & Sons.
- 9. McCoy, R. M. (2005). Field methods in remote sensing. Guilford Press.
- 10. Miller, G.T. (2002). Sustaining the earth, an integrated approach. (5th edition) Books/Cole, Thompson Learning, Inc.
- 11. Moser, G., & Zerubia, J. (2018). Mathematical models for remote sensing image processing, Springer, Berlin.
- 12. Porwal, M. C. (1997). Remote Sensing analysis of Environmental Resources for Planning and development. APH Publishing.
- Raju, N. J., Gossel, W., Ramanathan, A. L., & Sudhakar, M. (Eds.). (2014). Management of water, energy and bio-resources in the era of climate change: emerging issues and challenges. Springer.
- Teluguntla, P., & Thenkabail, P. S. (2015). Remote Sensing Handbook (Volume II): Land Resources Monitoring, Modeling, and Mapping with Remote Sensing, Chapter: 6, Pub.
- 15. Thenkabail, P. S., (2016). Remote Sensing Handbook; Volume 1: Remotely Sensed Data Characterization, Classification, and Accuracies. Taylor & Francis.
- Thenkabail, P. S., (2016). Remote Sensing Handbook; Volume 3: Remote Sensing of Water Resources, Disasters, and Urban Studies. Taylor & Francis.
- 17. Thenkabail, P., Lyon, J. G., Turral, H., & Biradar, C. (2009). Remote sensing of global croplands for food security. CRC Press.

- 1. https://ncert.nic.in/textbook/pdf/kegy307.pdf
- 2. https://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
- 3. https://www.guilford.com/excerpts/mccoy.pdf?t
- 4. https://www.aidash.com/resource/remote-sensing-art-behind-geospatial-data-collection
- 5. https://www.fao.org/3/T0446E/T0446E04.htm

Prepared by : Dr. S. Maria Packiam

COs	CO Description	Cognitive Level
CO1	To record and recall the basic principles of analytical methods, compare and contrast the mechanism of modern laboratory instruments.	K1, K2
CO2	To classify and explain the structure and general characteristics of biological samples, identify the appropriate experiments for research.	К3
CO3	To analyze molecular techniques, Develop suitable analytical methods for the Isolation and Quantification of Biomolecules.	K4
CO4	To rank and rate the required laboratory skills to perform, interpret and analyze widely used molecular biology techniques.	K5
CO5	To compile and construct different laboratory techniques to investigate immunological and histological examination.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO2SE02
Course Title	Endocrinology and Neuroscience
Credits	02
Hours/Week	04
Category	Subject Elective (SE)
Semester	II
Regulation	2022

Course Overview

- 1. The course highlights on the hormones, their biochemical origin, functions and the contribution of comparative studies to the field of neuroendocrinology.
- 2. To understand the neuroendocrine influences on health across the lifespan from development, puberty, adulthood and aging.
- 3. To understand the physiological/endocrinological mechanisms to underpin the evolutionary correlations and constraints commonly observed at higher levels of biological organization.
- 4. To impart knowledge on the major contributions that comparative endocrinologists have made to the science of endocrinology, and we highlight the emerging areas of research and how endocrinologists can contribute to the study of organismal biology in the 21st century.
- 5. The course module is designed to learn the most comprehensive up-to-date source covering basic principles, neural regulation, hormone function and behavior, and neuroendocrine pathology.

Course Objectives

- 1. To provide a basic understanding of central nervous system function and how body systems are controlled through neuronal and hormonal mechanisms.
- 2. To help in advancing their knowledge on endocrine pathology employing molecular tools and techniques.
- 3. To focus on animal studies unravelling the endocrine disorders, improving their diagnosis and enhancing their management in all animal species.
- 4. To provide molecular level insight on endocrinological events in the animal body to focus on various approaches to understand hormone action and its related applications in the field of life science.
- 5. To know the general organization of brain, physiological, cognitive processes and the effects of drugs cellular function in the nervous system.

Prerequisites	Basic knowledge on Molecular Biology, and Animal Physiology
---------------	---

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive Level		
I	Introduction to Endocrinology Introduction to the endocrine system, Discovery of hormones, Classification of hormone, –basic concepts and methods, Modes of hormone secretion, Endocrine glands and hormones, structural features of endocrine glands, Hormonal effects and regulation Hormones as messengers, Hormones and eukaryotic metabolic regulation.	10	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		
Π	Hormone Mechanism Biochemical Aspects of Metabolism, Mechanism of action of Peptide hormones, Thyroid hormones, Steroid hormones. Biosynthesis of steroid hormones de novo, Biosynthesis and secretion of pancreas, adrenal, ovary, testis and thyroid hormones, Factors influencing secretion, Cascade of reaction linked to signal transduction, Hormones and behavior Hormonal control of growth and reproduction in vertebrates Neuro- endocrine integration in vertebrate, Endocrine disorders- brief description, endocrine disease and hormone- replacement therapies, Hormones and human health.	12	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		
III	Endocrinology of invertebrates Concepts of neurosecretions - endocrine systems in crustaceans - endocrine control of moulting and metamorphosis - neuroendocrine system in insects - endocrine control of moulting - metamorphosis and reproduction. In Annelids: Neurohemal organ and its function, In Mollusks: Neurohemal organ and its function, Endocrine physiology of Arthropods. In Insects: Types of hormones and their release sites, Prothoracicotropic hormone, Ecdysteroids, Juvenile hormone, Neuropeptides, Vertebrate-type hormones In Crustaceans: X-organ, Y-organ and associated neurohemal organs. Endocrine physiology of Echinodermata: Neuropeptides and reproduction.	12	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6		

-				1
IV	Fundamentals of Neuroscience	13	CO1	K1, K2, K3,
	Functional neuro anatomy, Evolution of the nervous		CO2	K4, K5, K6
	system, organization of vertebrate brain, Basic plan and		CO3	
	evolution of the vertebrate nervous system, Structure		CO4	
	and function of neurons; types of neurons; Synapses;		CO5	
	Glial cells; myelination; Basic of development-			
	formation of neural tube, vesicles and derivatives of each			
	vesicle, Blood Brain barrier; Neuronal differentiation;			
	Characterization of neuronal cells; Meninges and			
	Cerebrospinal fluid; Spinal Cord.			
V	Neurophysiology and Artificial Intelligence	13	CO1	K1, K2, K3,
	Resting and action potentials; Mechanism of action		CO2	K4, K5, K6
	potential conduction; Voltage dependent channels;		CO3	
	nodes of Ranvier; Chemical and electrical synaptic		CO4	
	transmission; information representation and coding by		CO5	
	neurons, Synaptic transmission, neurotransmitters and			
	their release; fast and slow neurotransmission;			
	characteristics of neurites; hormones and their effect on			
	neuronal function, Animal models for neurobiological			
	research, AI in Neuroscience, Swarm robots, the			
	artificial neural networks, AI in Neurological			
	Healthcare, Challenges and prospective of AI in modern			
	biology.			
Sugge	sted Readings			
1.	Baer, M.F. & Connors B.W. (2015) Neuroscience: Ex	ploring	g the bra	ain. Lippincott
	Williams and Wilkins.			
2.	Barington. (1979). Hormones and evolution, I & II. Acad	emic P	ress.	
3.	B. Barrington, E. J. W. (1985). An introduction to general and comparative endocrinolog		endocrinology.	
	Claredon Press Oxford.			
4.	Bentley, P. J. (1985). Comparative vertebrate endocrit	nology	(2nd e	d). Cambridge
	University Press.			
5.	Byrne, J.H., Heidelberg, R. & Waxham, M.N. (2014) From			Networks: An
	Introduction to Cellular and Molecular Neuroscience. Act			
6.	David, V., Dai, B., Martin, A., Huang, J., Han, X., & Q			
	regulates FGF-23 expression in bone. Endocrino	logy,	154(12)	, 4469–4482.

https://doi.org/10.1210/en.2013-1627

- 7. Gordon M. Shepherd G.M, & Shepherd, (1994) Neurobiology. (3rd ed). Oxford University Press.
- 8. Hadley, M. E., & Levine, J. E. (2007). Endocrinology (6th ed). Prentice Hall. NJ.
- 9. John, F. Laycock & Peter H. Wise. (1996). Essential endocrinology. (3rd edition). Oxford University Press;
- 10. Kandel, E.R., Schwartz, J.H. & Jessell, T.M. (2000) Principles of Neural Science (4th edition) McGraw Hill Companies
- 11. Mathews, G. G. (2000). Neurobiology (2nd ed). Blackwell Publishing Science.
- 12. Nobil. E.K &. Neil. JU. D (1988). The physiology of reproduction, I and II. Raven Press.
- 13. Nussey, S.S. & Whitehead, S.A. (2001) Endocrinology: An Integrated Approach, Oxford: BIOS Scientific Publishers.
- 14. Simmons, J. & Young, D. (2003) Nerve Cells and Animal Behaviour (2nd edition) Peter. CUP. 75, Cambridge University Press.
- 15. Stahl, S.M. (2000) Essential Psychopharamacology- Neuroscientific Basis and Practical Applications (2nd edition), Cambridge University Press.
- 16. Turner, C. D., & Bangara, J. T. (1986). General endocrinology. Saunders International Student edition. Toppan Company Limited.
- 17. Vilayanur, S.R. & Blakeslee S. (1998) Phantoms in the Brain. Probing the Mysteries of the Human Mind. William Morrow & Conmpany. New York.
- 18. Wigglesworth, B. (1972). The principles of insect physiology by, V. ELBS and Chapman & Hall.
- 19. Wiliaimas, R. H. (1974). Textbook of endocrinology V. Ed. Saunders Press, London.

- 1. https://www.intechopen.com/books
- 2. https://academic.oup.com/icb/article/49/4/339/644276
- 3. https://onlinelibrary.wiley.com/journal/13652826
- 4. https://joe.bioscientifica.com/
- 5. https://pll.harvard.edu/subject/neuroscience

Prepared By : Dr. M. Balachandar

COs	CO Description	Cognitive Level
CO1	To understand how body systems are controlled through neuronal and hormonal mechanisms.	K1, K2
CO2	To correlate the effects of hormones in the neuronal functions and behaviour of animals.	К3
CO3	To compare the endocrine system of vertebrates and invertebrates.	K4
CO4	To explain the functioning of endocrine organs and the physiological and cognitive processes of nervous system.	K5
CO5	To design research plans using animal models for advanced research in neurobiology.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO2SE03
Course Title	Breeding in Plants and Animals
Credits	02
Hours/Week	04
Category	Subject Elective (SE) - Theory
Semester	II
Regulation	2022
Course Overvi	ew

- 1. The course emphasizes the importance of breeding programs in the national and international contexts.
- 2. Traditional and novel breeding methodologies have been elaborated to encourage the learners to practically apply the concepts in the field.
- 3. The course introduces the desirable economic traits in plants and animals and the importance of identifying genetic variations.
- 4. The course involves stimulating evidence-based thinking skills to conceive innovative solutions to the present challenges in this field of study.

Course Objectives

- 1. To understand the basic principles in plant and animal breeding and its beneficial applications.
- 2. To introduce innovative techniques to the learners that would serve to boost farm entrepreneurship.
- 3. To identify economic traits of organisms and to plan breeding programs suited for the global and national scenarios.
- 4. To assess the quality of breeding techniques and to select the most suitable breeding method for a particular breed or species.
- 5. To collaborate with local farmers and design economical breeding solutions.

Prerequisites	Basic knowledge on Biology or Zoology
---------------	---------------------------------------

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive
				Level
Ι	Importance of breeding programs	12	CO1	K1, K2, K3,
	Objectives and scope of plant and animal breeding		CO2	K4, K5, K6
	programs. Economic traits in plants and animals.		CO3	
	Government schemes and missions to promote animal		CO4	
	rearing in India. National and state livestock policies for		CO5	
	breeding.			
II	Selection methods in plant and animal breeding	12	CO1	K1, K2, K3,
	Criteria for selection of plant and animal breeding stocks.		CO2	K4, K5, K6
	Natural and Artificial selection. Selection methods for		CO3	
	plant breeding - pure line and mass selection methods.		CO4	
	Selection methods for animal breeding - individual		CO5	
	selection, pedigree selection, family and progeny			
	selection, unified score card system and body condition			
	score system. Molecular tools for selection in plant and			
	animal breeding - marker-assisted selection and genome-			
	wide association studies.			
III	Plant breeding techniques	12	CO1	K1, K2, K3,
	Significance of apomixis in plant breeding. Emasculation		CO2	K4, K5, K6
	and crossing techniques. Hybridization and back crossing		CO3	
	methods. Self-incompatibility and male sterility and their		CO4	
	utilization in crop improvement. Heterosis, inbreeding		CO5	
	depression, synthetic and composite varieties, pure line			
	hybrids and inbred hybrids. Mutation breeding and			
	genome editing technique. Plant tissue culture –			
	micropropagation and transgenesis.	10	001	<u>111 110 110</u>
IV	Animal breeding techniques	12	CO1	K1, K2, K3,
	Inbreeding - voluntary and constrained inbreeding,		CO2	K4, K5, K6
	monitoring the rate of inbreeding, risks of inbreeding,		CO3	
	prevention of inbreeding. Crossbreeding – heterosis, two-		CO4	
	way cross, three-way cross, four-way cross, two-way		CO5	
	rotation, three-way rotation, introgression, grading-up,			
	random breeding, monogamous and polygamous mating			

	(harems), trios mating, creation of synthetic breeds.			
	Hybridization – interspecies and intraspecies hybrids.			
V	Reproductive techniques in the breeding of farm	12	CO1	K1, K2, K3,
	animals		CO2	K4, K5, K6
	Artificial insemination, embryo transfer technologies,		CO3	
	multiple ovulation and embryo transfer (MOET), embryo		CO4	
	splitting, embryo and semen sexing, in vitro fertilization.		CO5	
	Use of gene editing technology in breeding. Techniques			
	for mating laboratory animals such as fish, mice and			
	guinea pigs.			
Sugge	sted Readings			-
1.	Acquaah, G. (2020). Principles of plant genetics and breed	ing. W	iley.	
2.	Fisker, C. (2017). Animal breeding and genetics. Scitus Ac	cademi	cs LLC.	
3.	Hartung, F., & Schiemann, J. (2014). Precise plant breeding	ng usin	g new g	enome editing
	techniques: Opportunities, safety and regulation in the EU	. Plant	Journal	: For Cell and
	Molecular Biology, 78(5), 742–752. https://doi.org/10.111	1/tpj.12	2413	
4.	Jadon, N. S. (2020). Animal genetics and breeding,	ng, animal nutrition, livestock		
	production and management. New India Publishing Agence	у.		
5.	Johnson, D. V., Al-Khayri, J. M., & Jain, S. M. (2019).	Advar	nces in p	plant breeding
	strategies: Industrial and food crops, Springer International Publishing.			
6.	Kuckuck, H., Kobabe, G., & Wenzel, G. (2020). Fundamentals of plant breeding. Walter			
	de Gruyter GmbH & Co. KG.			
7.	Pal, A., & Chakravarty, A. K. (2019). Genetics and breeding for disease resistance of			
	livestock. Elsevier Science.			
8.	Prasad, A. K. (2015). Animal breeding: A recent gradu	ate's c	concept.	Lap Lambert
	Academic Publishing GmbH KG.			
	Ram, M. (2014). Plant breeding methods. Public Health In		-	-
10	. Sanders, S. (2022). Understanding animal breeding and g	genetic	s. Murph	ny and Moore
	Publishing.			
11	. Schön, C. C., & Simianer, H. (2015). Resemblance betwee			
	plant breeding. Journal of Animal Breeding and	l Ger	netics,	132(1), 1–2.
	https://doi.org/10.1111/jbg.12137			
	. Shaw, T. (2019). Animal breeding. HardPress.		_	
13	. Singh, B. D., & Shekhawat, N. S. (2019). Plant Breeding	g in 21	st Centu	ıry. Scientific
	Dublishing			

Publishing.

- 1. https://www.sciencedaily.com/releases/2021/12/211203081525.htm
- 2. https://www.youtube.com/watch?v=44Wp8zI5NWI
- 3. https://www.youtube.com/watch?v=8ATRfaiaOLg
- 4. https://www.youtube.com/watch?v=3agp4U61TaQ

Prepared By : Dr. M. D. Anitha Sebastian

CO – Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To identify the key principles and criteria in plant and animal breeding and to translate the theoretical knowledge gained into beneficial applications.	K1, K2
CO2	To solve current problems in breeding programs and employ innovative techniques that would serve to boost farm entrepreneurship.	К3
CO3	To categorize the organisms based on their economic traits and to plan breeding programs suited for the global and national scenarios.	K4
CO4	To assess the quality of breeding techniques and to select the most suitable breeding method for a particular breed or species.	K5
CO5	To collaborate with local farmers and design economical breeding solutions.	K6

Cours	e Code	PZO2SE04			
Cours	e Title	Nanotechnology and Synthetic Biology			
Credit	ts	02			
Hours	/Week	04			
Categ	ory	Subject Elective (SE)			
Semes	ter	II			
Regula	ation	2022			
1. 2. 3. 4. Cours 1. 2.	chemistry The aim nanopartie In this cou the impace It also ince agricultur e Objectiv To unders To know nanopartie	Tanotechnology is an interdisciplinary subject integrating the fields of physics, memistry, biology, material science etc. The aim of the course is to give knowledge about properties and applications of anoparticles in the modern era. The this course, we will discuss about the social issues related to nanotechnology and also be impact of this new technology in environmental pollution. The also includes the concepts and application of synthetic biology in field of medicine, griculture and industry.			
	medical sciences, food technology and environmental science.				
4.	To know environm	the ethical issues related to the use and disponent.	osal of	nanomat	erials into the
5.					
Prerec	quisites	Basic knowledge of physics and Biology			
	SYLLABUS				
T T • 4					
Unit		content		005	0
	T.A. J		10		Level
Unit		tion to nanotechnology	12	CO1	Level K1, K2, K3,
	History,	tion to nanotechnology properties and morphology of nanoparticles,	12	CO1 CO2	Level
	History, j classificat	tion to nanotechnology properties and morphology of nanoparticles, ion and characterization. Synthesis of	12	CO1 CO2 CO3	Level K1, K2, K3,
	History, j classificat nanoparti	tion to nanotechnology properties and morphology of nanoparticles,	12	CO1 CO2	Level K1, K2, K3,

II	Application of nanotechnology in health care and	12	CO1	K1, K2, K3,
	biotechnology		CO2	K4, K5, K6
	Drug delivery systems - nanocarriers, antibody and		CO3	
	antibody conjugates, targeted delivery - chitosan and		CO4	
	alginate. Bacterial dependent delivery of vaccines.		CO5	
	Nanoscale biosensors. Nanotechnology in gene therapy.			
	Stem Cell technology. Blotting techniques-Nanoprobes.			
III	Applications of nanomaterials in agriculture and	12	CO1	K1, K2, K3,
	food industry		CO2	K4, K5, K6
	Nanofertilizers, Nanoherbicide, nanopesticide and		CO3	
	nanofungicide. Preparation and applications of Nano		CO4	
	cochleates, Nanolaminates and Nanoemulsions in food		CO5	
	industry. Nanoencapsulation technology.			
	Nanocomposites. Nanopackaging for enhanced shelf			
	life; Nanotechnology in intelligent packaging.			
IV	Nanotechnology and environment	12	CO1	K1, K2, K3,
	Role of nanoparticles in environmental pollution, effect		CO2	K4, K5, K6
	on human health, Green nanotechnology, Testing of		CO3	
	environmental toxic effect of nanoparticles using		CO4	
	microorganisms. Nanotechnology and bioethics		CO5	
V	Synthetic Biology	12	CO1	K1, K2, K3,
	Introduction to synthetic biology, recent developments		CO2	K4, K5, K6
	and applications in medicine, industry, agriculture.		CO3	
	Concept of artificial life and achievement. Biosafety and		CO4	
	biosecurity.		CO5	
Sugge	sted Readings			
1.	Brown. P. J & Stevens. K. (2007). Nanofibers and Na	notech	nology i	n Textiles.
	Woodhead Publishing Limited, Cambridge.			
2.	David S Goodsell (2004). Biotechnology. John Wiley & S	Sons.		
3.	Harry F. Tibbals (2010). Medical Nanotechnology and N	anome	dicine. C	RC Press.
4.	Jennifer Kuzma & Peter VerHage (2006). Nanotechnolog	gy in a	gricultur	e and food
	production. Woodrow Wilson International.			
5.	Lee, S.Y., Neilsen, J., Stephanopoulos, G (2018). Synth	hetic B	Biology.	Volume 8,
	Wiley Blackwell publications.			
6	5 Lynn I Frewer WillehmNorde R H Fischer & Kampers W H (2011)			

 Lynn. J, Frewer, WillehmNorde. R. H, Fischer & Kampers. W. H. (2011). Nanotechnology in the Agrifood sector, Wiley-VCH Verlag.

- 7. Manuel Porcar & Juli Pereto (2014). Synthetic Biology: From iGEM to the artificial cell., Springer publication.
- 8. Phoenix, D.A. & Ahmad, W (2014) Nanobiotechnology. One Central Press Ltd
- 9. Pradeep, T. (2017) The Essentials: Understanding Nanoscience and Nanotechnology: McGraw-Hill Education.
- 10. Qingrong Huang, (2012) Nanotechnology in the Food, Beverage and Nutraceutical Industries, Elsevier.
- 11. Sulabha k. Kulkarni (2014). Nanotechnology Principles and practices, Third edition, Capital Publishing company, New Delhi.
- 12. Thomas Varghese & K.M. Balakrishna (2021) Nanotechnology, Atlantic.

- 1. https://bit.ly/3gOgDg3
- 2. https://bit.ly/3sHX6Dz
- 3. https://bit.ly/3oVYRMm

Prepared by : Dr. Renilda Sophy A. J

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO1	To understand the concept of nanotechnology and synthetic biology.	K1, K2
CO2	To correlate the properties and functions of biomolecules in different biological systems	К3
CO3	To analyze the tools and techniques used in nanotechnology and synthetic biology.	K4
CO4	To explain the applications of nanoparticles and artificial cells	К5
CO5	To design nanoparticles and redesign biological systems to improve human welfare.	K6

Course Code	PZO2SE05
Course Title	Wildlife Conservation and Management
Credits	02
Hours/Week	04
Category	Subject Elective (SE)
Semester	II
Regulation	2022

Course Overview

- 1. Wildlife conservation and management course provide deep knowledge in the study of essential concepts, principles, national and international policies, and importance of wildlife along with threats and management.
- 2. This course includes the broad aspect of the wild animals with reference to their distribution, natural history, niche concept food and feeding habits of wildlife species, population, territorial defence, home range of the individual species populations.
- 3. A detailed study on policy and regulation, case studies, IUCN revised red list categories, National and international conventions, role of NGO in conservation are included for establishing the priorities and implementing conservation and management actions.
- 4. This course enlightens the modern aspects of conservation on wildlife ecology by monitoring and survey techniques, GIS and habitat management practices.
- 5. This course also focusses on the impacts of illegal wildlife trafficking, critical analysis by wild life forensics, and foundation of wild life research institutes and organization for wildlife conservation and endangered species for implementing action plans and solutions.

Course Objectives

- 1. To understand the modern concepts in wildlife management.
- 2. To understand the conservation policies in national and global level.
- 3. To understand landscape approach to conservation and acquire skills for planning scientific wildlife management.
- 4. To understand the human wildlife conflict.

Prerequisites	Basic knowledge in Environmental science
---------------	--

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive Level		
Ι	Introduction to Wildlife	13	CO1	K1, K2, K3,		
	Habitat diversity of Indian wildlife and faunal zonation;		CO2	K4, K5. K6		
	major biomes of the world, biogeographic zones of India;		CO3			
	Zoogeographic regions of the world Endemic species,		CO4			
	Important Indian fauna and their distribution; Wildlife		CO5			
	habitat and characteristics, Fauna and adaptation with					
	special reference to Tropical forest. Wildlife depletion &					
	threatened wildlife, Reasons for wildlife depletion in India,					
	Wildlife conservation approaches and limitations.					
	Protected Area concept: National Parks, Sanctuaries and					
	Biosphere Reserves, RAMSAR reserves; cores and					
	Buffers, Nodes and corridors. Community Reserve and					
	conservation Reserves.					
II	Wildlife Conservation	14	CO1	K1, K2, K3,		
	Conservation and management: In-situ conservation and		CO2	K4, K5, K6		
	Ex-situ conservation; Regional, National and global		CO3			
	Conservation efforts and legal aspects: IUCN revised red		CO4			
	list categories, Red Data Book and red listing. Wildlife		CO5			
	census, radio telemetry in wildlife studies; National and					
	international conventions: MAB, CITES, TRAFFIC;					
	Indian case studies on conservation / management strategy;					
	Special projects for wildlife conservation; Rio Protocol,					
	Rio 20+, Project Tiger, Project Elephant, Gir Lion Project,					
	Crocodile Breeding Projects, Project Hangul(1972).					
	Sampling forest ecosystems and analyzing the data					
	collected. Scat analysis; Captive breeding and					
	reintroduction of threatened species. Role of NGO in					
	conservation.					
III	Conservation Breeding and Wildlife Utilisation	13	CO1	K1, K2, K3,		
	Captive breeding and Propagation; Conservation breeding		CO2	K4, K5, K6		
	Management Plans. Role of scientific institution in		CO3			
	Conservation Breeding Programme. Principles of		CO4			
	biological requirements of species; Case studies on		CO5			
	Conservation Breeding Programme of endangered wild					

	animals. Wildlife Utilisation: Non-consumptive and consumptive utilization, their economic benefit. Game			
	ranching and controlled off-take from the wild population,			
	rationale, management design, harvesting by management			
	or hunting licences, marketing procedures. Use of wildlife;			
	Wildlife Tourism.			
IV	Wildlife Management	12	CO1	K1, K2, K3,
	Principles and practices of wildlife management. cause of		CO2	K4, K5,K6
	extinction, Management of special habitats; riparian zones.		CO3	
	Grasslands etc. Analysis and need for wildlife		CO4	
	management, problems in plantations and exploited		CO5	
	forests; Role of Biology in management. Mammalogy,			
	Ornithology, Herpetology and Ichthyology, Joint forest			
	management. Forest spatial structure, Fire ecology; effects			
	on forest dynamics, Field Ethics; Migration Corridors-			
	Man Animal Conflict; Animal Conflict Environment			
	Impact Assessment (EIA).Human Dimensions in Wildlife			
	Management Wildlife Health Management.			
V	Landscape approach in Management and Use of	8	CO1	K1, K2, K3,
	Modern Technology		CO2	K4, K5, K6
	Wild Life Management and Restoration; Management plan		CO3	
	for Protected Areas; Field techniques in Wildlife studies,		CO4	
			005	
	communications, staff and visitor amenities, monitoring.		CO5	
	communications, staff and visitor amenities, monitoring. GIS/GPS/Imagery, camera trapping/Drones etc.Principles		005	
	_		COS	
	GIS/GPS/Imagery, camera trapping/Drones etc.Principles		COS	
	GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of		COS	
	GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans,		COS	
00	GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings			
00	GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation	n and		ement. Nidhi
1.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. 		Manag	
1.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. Bailey, J.A. (1984). Principles of Wild Life Management. 		Manag	
1. 2.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. Bailey, J.A. (1984). Principles of Wild Life Management. York.	John	Manag Wiley	& Sons, New
1.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. Bailey, J.A. (1984). Principles of Wild Life Management. York. Bookhout, T.A. (1996) Research and Management Technique 	John	Manag Wiley	& Sons, New
1. 2. 3.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. Bailey, J.A. (1984). Principles of Wild Life Management. York. Bookhout, T.A. (1996) Research and Management Technique (5th edition) The Wildlife Society, Allen Press.	John les for	Manag Wiley Wildlife	& Sons, New e and Habitats
1. 2. 3.	 GIS/GPS/Imagery, camera trapping/Drones etc.Principles of planning, objectives, resource surveys, analysis of surrounding region, management zones, theme plans, Financing protected areas; Wild Life Forensics; Wild life research institutes and conservation organization. sted Readings Agrawal, K.C., (2000). Wildlife of India: Conservation Publishers, India. Bailey, J.A. (1984). Principles of Wild Life Management. York. Bookhout, T.A. (1996) Research and Management Technique 	John les for	Manag Wiley Wildlife	& Sons, New e and Habitats

Science Ltd, UK.

- 5. Deshmann, R. F. (1992). Wildlife biology. Wiley Eastern Publisher, New Delhi.
- 6. Ellerman, J.R. (1961). The fauna of India. Manager of Publications, New Delhi.
- 7. Eugene P. Odum, (1972). Fundamentals of Ecology, W.B. Saunders Company, London.
- 8. Gee, E.P., (1964). The wild life of India. Collins, London.
- 9. Giles R.H., (1980). Wild life management techniques. Wildlife Society, Washington.
- Hunter M.L., Gibbs, J.B. & Sterling, E.J. (2008) Problem solving in Conservation Biology and Wildlife Management: Exercises for Class, Field, and Laboratory. Blackwell Publishing.
- 11. Krishnan M, (1978). India's Wildlife, Bombay Natural History Society, India.
- 12. Majid Husain, (2015). Environment and Ecology, Access Publishing
- 13. Nair SM,(1992). Endangered animals of India, National Book Trust, India.
- 14. Noen AN, (1984). Wildlife Ecology: An Analytical Approach, WM Freeman and Co, New York.
- 15. Owen, D.S. (1985). Natural Resources Conservation An ecological approach. McMillan Publications & Co., New York.
- 16. Sanderson, Ivan T. (1955). Living mammals of the world. Hamilton, London.
- 17. Shah JH, (1975). Introduction to Wildlife Management, McGraw Hill, New York.
- 18. Sharma. B.D. (2002). Indian Wildlife-Threats and Preservations. Anmol Publications Pvt. Ltd. India.
- 19. Sinha, P.C., (1998). Wildlife and forest conservation. Anmol Publication Pvt. Ltd, New Delhi.
- 20. Smith, M.A. (1941). The fauna of British India, Ceylon and Burma including the whole of the Indo-Chinese sub-Chinese subregion. Taylor and Francis, London.
- 21. Stanley, A.H., (2002). Managing our wildlife resources. Prentice-Hall, USA.
- 22. Sutherland, W.J. (2000) The Conservation Handbook: Research, Management and Policy. Blackwell Sciences 95
- 23. Teague R.D., (1967). A manual of wildlife conservation. Natraj Publishers, Dehradun
- 24. Usher MB, (1986). Wildlife Conservation and Evaluation Chapman and Hall, London.
- 25. Woodroffe, R., Thirgood, S. & Rabinowitz, A. (2005) People and Wildlife, Conflict or Co-existence? Cambridge University.

- 1. https://www.mgkvp.ac.in/Uploads/Lectures/49/859.pdf
- 2. https://courses.lumenlearning.com/wm-biology1/
- 3. https://www.nature.com
- 4. https://www.arlis.org/docs/vol1/69415913/hundal_edited_final_march_10.pdf
- 5. https://libguides.princeton.edu
- 6. https://www.youtube.com/watch?v=hhgQRkm7odc

- 7. https://www.greenpeace.org/india/en/
- 8. https://www.petaindia.com/
- 9. https://sstcn.org/
- 10. https://www.worldwildlife.org/

Prepared By : Dr. S. Maria Pakiam

COs	CO Description	Cognitive Level
CO1	To understand and recall the modern concepts in wildlife conservation and management.	K1, K2
CO2	To explain and Correlate human encroachments and wildlife depletion.	К3
CO3	To analyse the national and global policies and management strategies to improve wildlife conservation.	K4
CO4	To assess the diversity in wildlife habitats and landscape approaches to conserve it.	K5
CO5	To collate and discuss for the innovation of new methods in conservation breeding and implement of new approaches in management programs.	K6

Course Code	PZO3SE01
Course Title	Bioremediation, Phytoremediation and Biosensors
Credits	02
Hours/Week	04
Category	Subject Elective (SE)
Semester	III
Regulation	2022

- 1. Bioremediation, Phytoremediation, and Biosensors is a structured course for the development of biotech solutions in real-life problems.
- 2. This course covers the basic concepts and principles of Biomolecules and its applications in the environment.
- 3. It provides a broad perspective knowledge on the versatility applications of microbial systems to treat environmental pollutants, to familiarize students with the application of bio remedial technologies in natural environments.
- 4. The various aspects of phytoremediation on the environment for the removal and treatment of contaminants, metal from soil and water to render for eco-restoration.
- 5. Special emphasis is given to the development of biosensors and bioindicators to monitor pollution, and to eliminate pollutants from the environment, restore contaminated sites and avoid future pollution.

- 1. To understand the nature and importance of bioremediation, phytoremediation, and biosensors.
- 2. To understand when each strategy would be most applicable.
- 3. To understand the influence of contaminant characteristics on remediation (e.g. chemical structure, toxicity, and solubility).
- 4. To understand the development and importance of biosensors and their applications in various filed.

Prerequisites Basic knowledge in Environmental biology and Microbiolog	у
--	---

ognitive Level
K2, K3
, K5, K6
K2, K3
, K5, Ke
K2, K3
, K5, Ke
K2, K3
, K5,K6
K2, K3
, K5, K6
chnolog
C

Horizon Press, Chennai, India, 207pp.

 Allan Scragg, (2010). Environmental Biotechnology. Oxford University Press. New York. 447pp.

- 3. Baker, K.H. & Herson, D.S. (1994). Bioremediation. Mc. Graw Hill Inc, New York.375pp.
- 4. Bhatia, S.C. (2011). Hand Book of Environmental Biotechnology. Atlantic Publishers Ltd. New Delhi.
- 5. Evans, G.M. & Furlong, J.C. (2012). Environmental Biotechnology: Theory and Application. John Wiley and Sons, USA. 292pp.
- Jeong-Yeol Yoon, (2016). Introduction to Biosensors (12th ed.). Springer-Verlag, New York.
- 7. Mishra, C.S.K. & Asha A Juwarkar, (2007). Environmental Biotechnology. APH Publishing corporation, New Delhi. 466pp.
- Metcalf & Eddy Inc. (1978). Waste engineering treatment, disposal and reuse (2nd ed.). Tata McGraw Hill, New Delhi.
- 9. Mohammed Zourob, (2010). Recognition Receptors in Biosensors (1sted.). Springer-Verlag New York. 863pp.
- 10. Pepper, I., Gerba, C., Gentry, T., & Maier, R. (2008). Environmental Microbiology. Academic Press, USA. 624pp.
- 11. Rochelle, P.A., (2001). Environmental Molecular Biology: Protocols and applications. Horizon Press, India. 263pp.
- 12. Singh, A., Kuhad, R.C., & Ward O.P. (2009). Advances in Applied Bioremediation. Springer-Verlag Berlin Heidelberg, Germany.
- Vineet kumar, Gaurav Saxena & Maulin P. Shah, (2020). Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society (1sted.). Elsevier, 538pp.
- 14. Zvi Liron, (2012). Novel Approaches in Biosensors and Rapid Diagnostic Assays (1sted.). Springer US. 323pp.

Web Resources:

- 1. https://bit.ly/3rSsLCV
- 2. https://clu-in.org/bioremediation/
- 3. http://ei.cornell.edu/biodeg/bioremed/
- 4. https://bit.ly/3rUiBll
- 5. https://bit.ly/356Fj0r

Prepared by : Dr. V. Jelin

COs	CO Description	Cognitive Level
CO1	To understand and recall the basic principles and strategies of bioremediation, phytoremediation and biosensors.	K1, K2
CO2	To explain the techniques and interpret the applications to many aspects of environment	К3
CO3	To analyse the different forms of persistent pollutants to formulate biological methods of treating pollution.	K4
CO4	To assess the importance of biomolecules, genetically modified organisms and biosensors that are capable of degrading and monitoring pollutants.	K5
CO5	To collate and prepare a flow chart to design a suitable technique to improve the quality of our environment	K6

Course Code	PZO3SE02
Course Title	Fishery Science
Credits	02
Hours/Week	04
Category	Subject Elective (SE)
Semester	III
Regulation	2022

- 1. Fishery science is a multidisciplinary science that includes the study on biology, evolution, culture, capture, economics, and management of fishes.
- 2. It covers the basic concepts such as Systematics and taxonomy of fishes, basic morphology of major groups of fishes, fresh water and brackish water fishery resources, recent trends and techniques in fisheries.
- 3. This course offers to build advanced knowledge of culturing techniques in riverine, brackish and seawater fisheries and conservation.
- 4. This course focusses on the economic importance of fishing, fish processing stock management for a better quality of marketing.
- 5. This course also gives a basic idea of artificial intelligence in fisheries.

- 1. To understand the prehistoric and current diversity of fishes
- 2. To understand fishery resources, biological functions and the ecological roles that fishes play in freshwater, brackish water and marine ecosystems.
- 3. To understand the methodology in fishing, fish processing and stock management.
- 4. To understand the biomonitoring systems in fisheries.

Prerequisites	Basic knowledge in Zoology and aquaculture
---------------	--

	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive		
				Level		
Ι	Introduction to Fishes	12	CO1	K1, K2,		
	Systematics and taxonomy of fishes; Mechanism of		CO2	K3, K4,		
	evolution; speciation genetics; Ecological classification of		CO3	K5, K6		
	fishes; Major groups of fishes in the world. Biology of		CO4			
	commercially important fishes of India; Survey of world		CO5			
	fisheries.					
II	Fishery Resources and Management	12	CO1	K1, K2,		
	Riverine fisheries, Cold water fisheries, Estuarine		CO2	K3, K4,		
	fisheries, Marine fisheries, Coastal resource management.		CO3	K5, K6		
	Anthropogenic activities and their impact on coastal		CO4			
	fisheries. Management of marine fisheries in Indian		CO5			
	context.					
III	Culture Fisheries	12	CO1	K1, K2,		
	Fresh water fish culture; Brackish water fish culture;		CO2	K3, K4,		
	Mariculture; Nutrition, and disease management; Genetic		CO3	K5, K6		
	improvement and hybridization.		CO4			
			CO5			
IV	Capture, Economics and Fish Processing	12	CO1	K1, K2,		
	Marine fish catch in India and fisheries of commercial		CO2	K3, K4,		
	importance; classical and modern tools in fishing; Methods		CO3	K5, K6		
	of fish stock identification; Recent advances in fish stock		CO4			
	assessment, Marking and tagging and its significance.		CO5			
	Economics and Fish processing; Fish marketing methods					
	in India; Harvesting; handling, packaging and transport of					
	fish and shell fishes; Methods of preservation and					
	processing of fish. Fishery biproducts marketing.					
V	Recent Techniques in Fisheries	12	CO1	K1, K2,		
	Application of statistical methods in fisheries; Data		CO2	K3, K4,		
	processing techniques in fisheries; Application of remote		CO3	K5, K6		
	sensing in conservation of management of fish and faunal		CO4			
	diversity; sonar, radar; Fishways and screens. Fishery		CO5			
	monitoring centre and monitoring tools; Fish conservation					
	and Fishing laws. Fisheries research institute in India,					

- 1. Bardach, J.E., Ryther, J.H. & Miller, M.D. 2013. Aquaculture: The Farming Husbandry of Freshwater and Marine organisms, B. John Wiley & amp; Sons, New York, 844pp.
- Bond E. Carl, (2006). Biology of Fishes (3rd ed.). Academic Press Inc., New York, 820pp.
- 3. Day. F. (1958). Fishes of India (Vol. I and Vol. II). William Sawsan and Sons Ltd., London.
- 4. Govindan, T.K. (1985). Fish processing, technology. Oxford University, Delhi.
- 5. Gupta, S.K. and Gupta, P.C. (2006). General & Applied Ichthyology: Fish and Fisheries.
- 6. S. Chand & company, Mumbai. 1156 pp.
- Helfman, G.S., Collette, B.B., Facey, D.E., & Bowen, B.W. (2009). The Diversity of Fishes (2nd ed). Wiley-Blackwell Inc., 720 pp.
- 8. Hoar, W.S. & Randall, D.J. (1984). Fish Physiology (Vol. I-IX). Academic Press, New York, 416pp.
- 9. Jhingran, V. G. (1997). Fish and fisheries of India. Hindustan publications, India.751pp.
- 10. Khanna, S.S., & Singh H.R. (2014). A text book of fish biology & fisheries. Narendra publishing house. Jammu. India. 610pp.
- 11. Kells, V., & Carpenter, K. (2011). A Field Guide to Coastal Fishes: From Marine to Texas. Johns Hopkins University Press, 448pp
- 12. Lagler, K.F., Bardach, J.E., Miller, R.R., & Passino D.R.M. (2012). Ichthyology (2nd ed). John Wiley & Sons, New York.
- 13. Megrey, B. A. & Moksness, E., (2009). Computers in Fisheries Research. Springer, USA.
- 14. Mogalekar, H.S., & Johnson Canciyal., (2015). Remote sensing and GIS for fisheries management, LAP Lambert Academic Publishing, Germany, 132pp.
- 15. Potts, G.W., & Wootten, R.J., (1984). Fish Reproduction: Strategies and Tactics. Academic Press. 424pp.
- 16. Parihar, R.P. (1996). A text book of fish biology and Indian fisheries. central publishing house, Allahabad, India.

Web Resources:

- 1. https://www.fisheries.tn.gov.in
- 2. https://www.fao.org
- 3. https://www.oecd.org
- 4. https://basu.org.in
- 5. https://bit.ly/3Jtql4a
- 6. https://fisheries.org/books-journals/online-resources/

Prepared by : Dr. V. Jelin

COs	CO Description	Cognitive Level
CO1	To understand and recall the phylogeny, taxonomic classification, basic organisation of fishes, and major fisheries in India and world.	K1, K2
CO2	To explain the biology, culturing, fishing, processing and marketing of various fishes	K3
CO3	To analyse and compare the anatomy, reproductive potentiality and ecological adaptations in order to improve the aquaculture practices.	К4
CO4	To summerise the biology, ecology, pathology, evolution and reproduction to evaluate sustainable fishery.	K5
CO5	To collate and discuss to develop advanced techniques and to enhance research in the field of fishery.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Cours	rse Code PZO3SE03					
Cours	se Title Environmental Impact Analysis					
Credi	its 02					
Hours	s/Week	04				
Categ	ory	Subject Elective (SE)				
Seme	ster	III				
Regul	ation	2022				
This c assess negati Cours 1. 2. 3. 4. 5. 6. 7. 8.	Course Overview This course examines principles, procedures, methods, and applications of environmental impact assessment. The goal of the course is to promote an understanding of how environmental impact assessment is conducted and used as a valuable tool in the minimization of development's negative effects. Course Objectives 1. Appreciate the purpose and role of EIA in the decision-making process; 2. Understand strengths & limitations of environmental management; 3. To critically examine assumptions inherent in impact assessment. 4. To develop skills in identifying and solving problems. 5. To examine a range of environmental impact assessments.					
Prere	quisites	Basics of Environmental biology and Toxice	ology			
Unit		SYLLABUS Content	Hrs	COs	Cognitive	
					Level	
Ι	Earth's Ph Environm Ethics, E Environm Problems.	nd Sustainability hysical Systems: Matter, Energy, Geology. ental Systems and Ecosystem Ecology; conomics, and Sustainable Development. ental Policy: Making Decisions and Solving Biodiversity, and Conservation Biology; anagement, and Protected Area. The Urban ent: Creating Sustainable Cities;	12	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6	

	Environmental Health and Toxicology. Marine and			
	Coastal Systems Resources; Atmospheric Science, Air			
	Quality, and Pollution Control. Global Climate			
	Change. Fossil Fuels, Their Impacts and Energy			
	Conservation. Conventional Energy Alternatives;			
	New Renewable Energy Alternatives.	1.0	G (1	
II	Classification of Pollution and Pollutants	12	CO1	K1, K2, K3,
	Air Pollution: Primary and Secondary Pollutants, air		CO2	K4, K5, K6
	pollutants-sulfur dioxide- nitrogen dioxide, carbon		CO3	
	monoxide, Impact of air pollutants on human,		CO4	
	vegetation and environment, , Ambient Air Quality		CO5	
	Standards			
	Water Pollution: Point and Non-point Source of			
	Pollution, Major Pollutants of Water, Physical,			
	chemical and biological characteristics of water ,			
	Water borne diseases, Water Quality standards			
	Solid Waste: Classification and sources of Solid			
	Waste, Characteristics of Solid Waste, e waste,			
	Radioactive wastes Land/Soil Pollution: Effects of			
	urbanization on land degradation, Impact of Modern			
	Agriculture on Soil, pesticide pollution, Effect on			
	Environment			
	Noise Pollution: Sources of Noise, Effects of Noise,			
	measurement of noise, Equivalent sound pressure			
	level, Control measures. Radioactive Pollution, Heat/			
	Thermal Pollution, Light Pollution.			
	Classification of Pollution: Classification of			
	pollutants based on the number and spatial distribution			
	and type of emission.			
III	EIA Origin, Development and Process	12	CO1	K1, K2, K3,
	Purpose and aim, core values and principles, History		CO2	K4, K5, K6
	of EIA development, Environmental Management		CO3	
	Plan, Environmental Impact Statement, Scope of EIA		CO4	
	in planning a Project and its implementation.		CO5	
	Assessment process of Environmental Impact:			
	Screening, Scoping, Baseline data, Impact			
	Identification, Prediction, Evaluation and Mitigation,			
	,, <u>_</u>			

	Appendices and Forms of Application, Techniques of				
	Assessment-Cost-benefit Analysis, Matrices,				
	Checklist, Overlays, EIA Document.				
IV	Main participants in EIA Process	12	CO1	K1, K2, K3,	
	Roles of Project proponents and environmental		CO2	K4, K5, K6	
	consultants, Roles of the State Pollution Control		CO3		
	Boards (PCBs) /Pollution Control Committee (PCCs),		CO4		
	Impact Assessment Act (IAA). Public participation.		CO5		
V	Environmental appraisal and procedures in India	12	CO1	K1, K2, K3,	
	and EIA		CO2	K4, K5, K6	
	Environmental Audit of different environmental		CO3		
	resources, Risk Analysis, Strategic environmental		CO4		
	assessment, ecological impact assessment: legislation.		CO5		
	Impact on Environmental component: air, noise,				
	water, land, biological, social and environmental				
	factors.				
Sugge	ested Readings				
1.	Anjaneyulu Y & Manickam Valli, (2011). "Env	ironme	ental Im	pact Assessment	
	Methodologies", CRC Press				
2.	Bryan, F.J. Manly. (2009). Statistics for Environmental	Scien	ce and M	Ianagement. CRC	
	Press.				
3.	Canter, W. L. (1995) Environmental Impact Asse	ssment	t, McGr	raw-Hill Science/	
	Engineering/ Math, New York;				
4.	Glasson, J., Riki, T., & Andrew, C. (2012). Introd	uction	to envi	ronmental impact	
	assessment (4th ed). Oxford Brookes University.				
5.	Kulkarni, V., & Ramachandra, T. V. (2006). Environment	nental	managei	ment, capital pub.	
	Co. New Delhi.				

- 6. Marriott, B. (1997). *Environmental Impact assessment: A practical guide*. McGraw-Hill Publication.
- 7. Morris, P. & Therivel, R. (1995) Methods of Environmental Impact Assessment, UCL Press, London;
- 8. Morris, P., & Therivel, R. (1995). Petts, J. (1999) (ed) Handbook of Environmental Impact Assessment, volume 1 and 2 p. 7. Methods of Environmental Impact Assessment, University College London Press. Blackwell Publishing Science.
- 9. Naik, S.C. and Tiwari, T.N. (2006). Society and Environment. Oxford & IBH Publishers.
- 10. Santra, S.C. (2011). Environmental Science. New Central Book Agency

- 11. Petts, J. (1999) (ed) Handbook of Environmental Impact Assessment, volume 1 and 2, Blackwell Science, Oxford;
- 12. Rump, H. H. (2000). Laboratory Manual for the Examination of Water, Waste water and soil. Wiley-VCH.
- 13. Sapru, R. K. (1987). Environmental Management in India (Vol. I & II). Ashish Publishing House.
- 14. Sawyer, C. N.; McCarty, P. L. & Parkin, G. F. (2002). Chemistry for Environmental Engineering and Science. John Henry Press.
- 15. Shrivastava, A. K., Nicola, B., & Grimm, J. (2003). *Environmental impact assessment*. APH Publishers.
- Therivel, R. & Partidario, M.R. (1996) (eds) The Practice of Strategic Environmental Assessment, Earthscan, London; 8. Vanclay, F. and Bronstein, D.A. (1995) (eds) Environmental and Social Impact Assessment, Wiley & Sons, Chichester.
- 17. Wathern, P. (1990). *Environmental impact assessment: Theory and practice*. Routledge Publishers.

Web Resources

- 1. https://moef.gov.in/en//
- 2. https://cpcb.nic.in/
- 3. http://www.tnpcb.gov.inn/
- 4. https://www.neeri.res.inn/
- 5. https://www.secon.inn/
- 6. https://www.unep.org/
- 7. https://onlinecourses.nptel.ac.in/

Prepared by : Dr. M. C. John Milton

COs	CO Description	Cognitive Level
CO1	To define, describe and recognize the relevance of science and sustainability and enumerate details on pollution and environmental impact assessment.	K1, K2
CO2	To illustrate, apply and interpret the origin, magnitude and environmental consequence of pollution and solve issues through Environmental Impact Assessment.	К3
CO3	To classify, compare and analyse the types of pollution and its impact on environmental sustainability.	K4
CO4	To evaluate and appraise the process involved in Environmental Impact Assessment.	K5
CO5	To hypothesize remedial measures for better environmental standards and formulate sustainable methods to implement Environmental Impact Assessment protocols.	K6

Course Code	PZO3SE04			
Course Title	Intellectual Property Rights			
Credits	02			
Hours/Week	04			
Category	Subject Elective (SE)			
Semester	III			
Regulation	2022			

- 1. The study lesson provides an in-depth understanding to the students about the various forms of the intellectual property, its relevance and industrial impact in the changing global business environment.
- 2. Course module is designed to develop greater awareness among students about the patent law in India; importance of patent information in business development; patent search and its importance, and the various database available for conducting patent search.
- 3. The students must know the importance of Intellectual Property Rights, how the disclosure of invention is to be made in the patent application and to understand the legal aspects governing the various types of infringement.
- 4. This course will challenge the legal position relating to trade marks, copy rights and geographical indications of goods in India; who are entitled for registration; and when is a registered geographical indication said to be infringed.

- 1. To define and discuss the historical perspectives of different types of intellectual property rights.
- 2. To explain the concept and significance of intellectual property and property rights.
- 3. To explain the nature and important elements of the intellectual property rights registration and its enforcement.
- 4. To establish a mutually supportive relationship between the world trade organization and world intellectual property organization.
- 5. To describe the issues and agenda of the intellectual property rights; legal position relating to IPR and Patent infringement.

Prerequisites	Basic knowledge on IPRs
---------------	-------------------------

	SYLLABUS						
Unit	Content	Hrs	COs	Cognitive Level			
I	History of IPRIntroduction to IPRs, Basic concepts and need forIntellectual Property - Types and Important Elements ofIPR, India's journey to intellectual property right–Genesis and Development, Nature of IntellectualProperty, Industrial Property, technological Research,Inventions and Innovations.Agreements and LegislationsMajor International Instruments concerning IntellectualProperty Rights: International Treaties and Conventionson IPRs, TRIPS Agreement, PCT Agreement, IPR Acts	10	CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4	K1, K2, K3, K4, K5, K6 K1, K2, K3, K4, K5, K6			
	of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act.		CO5				
III	Patent Concept of Patent, Salient Features of Patents, Elements of Patentability- Product/Process of Patents application, duration of Patents - Types of Patent Applications, Filing of a Patent Application, Processing of Application, Patentable Inventions in Biotechnology and patent infringement.	13	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6			
IV	Trade Marks & Copyright Historical Perspective, Definitions, Object of Trade Marks and copyright. Registration Procedure, Filing and Prosecuting Trade Mark and copyright applications, International Registration Distinction between "Trade Mark" and "Certification Mark" Duration and Renewal procedure.	13	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6			
V	Industrial Designs Concept of Design, Procedure for Registration of Designs, Classification of Designs. Geographical Indications - Salient Features- Geographical Indication, Plant variety protection: meaning and benefit sharing and farmers' rights, other issues related to IPR - Plagiarism.	12	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6			

- 1. Damodar Reddy, S. V. (2019). *Intellectual Property Rights—Law and Practice, Asia law house publisher*.
- Kitchin, D. QC, Llewelyn, D., Mellor, J., Meade, R., Moody-Stuart, T., Keeling, D., & Jacob, R. (2005). *Kerly's law of trademarks and trade names* (14th ed). Sweet and Maxweel.
- 3. Bouchoux, D. E. (2015). Intellectual property: The law of trademarks. *s Patents and Trade Secrets* (4th ed). Cengage India.
- 4. Gopalakrishnan, N. S., & Agitha, T. G. (2009). *Principles of Intellectual Property right*. Eastern Book Company.
- 5. Bansal, K., & Bansal, P. (2013). *Fundamentals of intellectual property for engineers*. BS Publications/British Society of Periodontology Books.
- 6. Pandey, M., & Dr Pandey, P. (2020). *Intellectual property rights*. Technical Publications.
- 7. Narayanan, P. (2010). Law of Copyright and Industrial Designs; Eastern law House, Delhi.
- 8. Parulekar, A., & D'Souza, S. (2006). Indian Patents Law. Legal and business implications. Macmillan India Ltd.
- 9. Ganguli, P. (2011). *Intellectual property rights: Unleashing the knowledge economy, published by TATA*. McGraw-Hill Publishing Company.
- 10. Satakar, S. V. (2002). Intellectual property rights and copy rights. EssEss Publications.
- 11. ScopleVinod, V. (2012). Managing Intellectual Property, Prentice Hall of India Pvt Ltd.
- 12. Wadehra, B. L. (2000). *Law relating to patents, trademarks*, Designs & Geographical Indications; Universal law Publishing Pvt. Ltd.

Web Resources

- 1. https://guides.lib.uchicago.edu
- 2. http://www.tanscst.nic.in/
- 3. https://iprindia.org/
- 4. https://www.wipo.int/
- 5. https://ipindia.gov.in/

Prepared by : Dr. D. Robert Selvam

COs	CO Description	Cognitive Level
CO1	To identify and asses current and emerging issues relating to the intellectual property rights and its protection.	K1, K2
CO2	To prepare and practice various forms of IPRs, employ procedures to protect different forms of IPRs.	К3
CO3	To assess rights and responsibilities of the holder of patent, copy right, trademark, industrial design and plan variety protection. (CO4- add "to").	K4
CO4	To summarize the procedure for registration, effect of registration, statutory provision and terms of protection.	K5
CO5	To design and develop legal steps needed to ensure that intellectual property rights remain valid and enforceable. (CO3 – add "to")	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO3SE05
Course Title	Histochemistry and Clinical Lab Technology Lab Course
Credits	02
Hours/Week	04
Category	Subject Elective Lab
Semester	III
Regulation	2022

- 1. Understand the basic concepts of tissue fixation, dehydration, embedding, sectioning, staining and mounting of slides for histological examination
- 2. This course presents the morphological characteristics of microorganisms, their cultivation methods, and identification. Life cycle, economic importance and microbial diseases
- 3. This course enables students to stain and identify different macromolecules and nucleic acids
- 4. This course will help in understanding of basic concepts of practical bacteriology, mycology and procedures involved in tissue culture.
- 5. This course will help students understand biochemical aspects in clinical lab technology

- 1. To understand fixation and staining procedures employed in histochemistry
- 2. To understand staining and identification of macromolecules and differentiation of nucleic acid
- 3. To understand the basic concepts of microbiology and bacteriological techniques
- 4. To understand the mycological and tissue culture procedures in clinical lab technology

Prerequisites Basic knowledge in Histochemistry and Clinical lab technology	
---	--

	SYLLABUS				
Unit	Content	Hrs	COs	Cognitive Level	
Ι	Tissue Collection, Fixation and Processing	12	CO1	K1, K2, K3,	
	Sources and types histological specimens, Collection		CO2	K4, K5. K6	
	methods, Receiving, Recording and labeling. Fixation,		CO3		
	Basic principle, properties and classification of fixing		CO4		
	fluids. Processing of histological tissues, Tissue		CO5		
	Processor - dehydration, cleaning and wax embedding.				
	Technique of bone for histological studies.				
	Decalcification of calcified tissue.				
II	Section Cutting and Staining	12	CO1	K1, K2, K3,	
	Equipment for sectioning: Microtome, knife, honing and		CO2	K4, K5, K6	
	stropping. Types, care and use of microtome. Techniques		CO3		
	and principles of sections cutting - Frozen Section		CO4		
	Techniques: Carbon Dioxide Freezing, Cryostat and		CO5		
	freezing microtome. Preparation of slide,				
	deparaffinization and Staining. Basic principle and				
	mechanism of Hematoxillin and Eosin staining.				
III	Clinical Laboratory and Molecular Haematology	12	CO1	K1, K2, K3,	
	Code of safe lab practice, safe lab premise, personal		CO2	K4, K5, K6	
	safety measures, decontamination of infectious material		CO3		
	and disposal of lab waste. Molecular Haematology-		CO4		
	Clinical applications of molecular technology in		CO5		
	haematology, PCR for Alpha and Beta Thalassemia, and				
	Osmotic Fragility Test (OFT).				
IV	Examination of body fluids	12	CO1	K1, K2, K3,	
	Clinical importance of body fluids, blood, Cerebrospinal		CO2	K4, K5,K6	
	fluids, amniotic and Synovial fluid - Formation and		CO3		
	function, Chemical composition, Collection, Testing -		CO4		
	Gross examination, Chemical analysis, Microbiological		CO5		
	examination, Immunological tests, Cytological				
	examination and clinical correlation.				
V	Clinical Chemistry	12	CO1	K1, K2, K3,	
	Glucose determination - Oxidase method, Glucose		CO2	K4, K5, K6	
	tolerance test, HbA1C and G-6PD (glucose 6 -		CO3		

phosphate dehydrogenase). Identify, measure and	CO4	
monitor a wide array of drugs and metabolites in the	CO5	
blood for clinical purposes, The Special Testing Unit		
performs high-performance liquid chromatography		
(HPLC) for major biochemical diagnosis.		

- 1. Dubey, R. C., & Maheswari, D. K. (2005). A textbook of Microbiology, S. Chand, New Delhi.
- 2. Fischbach, F. T., & Dunning, M. B. (2009). A Manual of laboratory and Diagnostic Tests. Lippincott Williams & Wilkins.
- 3. Guyton, A. C., & Hall, J. E. (2010). Textbook of medical physiology. Elsevier.
- 4. Godkar, P. B., & Godkar, D. B. (2006). Medical laboratory technology, Bhalani, New Delhi.
- 5. Hall, J. E., & Guyton, A. C. (1996). A textbook of Medical physiology. Saunders.
- 6. Mukerjee, K. L., & Ghosh, S. (2010). Medical laboratory technology, II. McGraw-Hill
- 7. Ochei, J., & Kolhatkar, A. (2000). Medical laboratory science: Theory and practice. McGraw-Hill.
- 8. Pellicciari, C., Biggiogera, M., & Pellicciari. (2017). *Histochemistry of single molecules*. Springer.
- 9. Rose, S. (1984). Clinical Laboratory safety. Lippincott.
- 10. Shyamasundari, K., & Rao, K. H. (2007). Histochemistry in focus: A sourcebook of techniques and research needs. Mjp Publishers.
- 11. Stoward, P. J. (Ed.). (1973). Fixation in histochemistry. Springer.
- 12. Sood, R. (2006). Text book of Medical Laboratory Technology, Jaypee, New Delhi.
- 13. Topley, W. W. C., Wilson, S. G. S., & Miles, S. A. (1936). The principles of bacteriology and immunity, Edward Arnold.

Web Resources:

- 1. https://nios.ac.in
- 2. https://health.info.com/web/health
- 3. https://histologyguide.com/
- 4. https://digitalhistology.org/
- 5. https://www.rcpath.org/

Prepared By : Dr. S. Maria Packiam

COs	CO Description	Cognitive Level
CO1	To understand and recall the basic concepts, main	K1, K2
	developmental stages, expression of genes, environmental influence in development and causes of infertility.	
CO2	To determine the mechanism of genetic, cellular, anatomical and environmental interaction on development, and apply experimental procedures and techniques to examine the normal and abnormal embryonic development.	К3
CO3	To differentiate and compare the developmental stages of animals and analyse the process of development with appropriate biomolecular techniques.	K4
CO4	To assess the regulation and coordination of biomolecules for normal developmental process.	К5
CO5	To collate and discuss the interaction of biomolecules and environment in development to Select a broad perspective study on suitable techniques to erase infertility and other developmental genetic disorders.	К6

Course	se Code PZO3ID01					
Course	Title	System Physiology – Plant				
Credits	5	03				
Hours/	Week	06				
Catego	ry	Inter-Disciplinary (ID)				
Semest	er	III				
Regula	tion	2022				
Course	Overviev	ý.				
1.	Plant phys	iology is the study of the functional aspects of J	plants.			
2.	The aim of	f the course is to give basic knowledge about ho	w fund	lamental	processes like	
	respiration	, photosynthesis, defense, communication and	growth	takes pl	ace in plants.	
3.	In this cou	rse, we will discuss about how biomolecules be	ehave i	nside cel	ls.	
4.	It also inc	cludes stress physiology in plants, hormone	functio	ns and	environmental	
	physiolog	у.				
Course	Objectiv	es				
1.	To unders	tand the role of different biomolecules in the fu	nctioni	ng of pla	ants.	
2.	To know t	he process of photosynthesis, respiration, meta	bolic p	athways	, translocation	
	etc.					
3.	To explair	the role of different enzymes, secondary metal	oolites	and horr	nones in stress	
	physiology	y, growth and reproduction.				
4.	To know t	he concept of biological clock and how plants re	act to e	nvironm	ental changes.	
Prereq	uisites	Basic knowledge in Biology				
		SYLLABUS				
Unit		Content	Hrs	COs	Cognitive	
					Level	
Ι	Absorption and transportation of water, Transpiration,		18	CO1	K1, K2, K3,	
Phtosynthesis, light harvesting complexes, m		nesis, light harvesting complexes, mechanism		CO2	K4, K5, K6	
of electr		con transport, photoprotective mechanism,		CO3		
	Carbon d	ioxide fixation – C3, C4 and CAM pathways		CO4		
	light rea	actions, carbon reactions, translocation in		CO5		
	phloem.					

II	Respiration, citric acid cycle, ATP synthesis,	18	CO1	K1, K2, K3,			
	alternate oxidase, photorespiratory pathway,		CO2	K4, K5, K6			
	assimilation of mineral nutrients, nitrogen		CO3				
	metabolism – nitrate and ammonium assimilation,		CO4				
	amino acid biosynthesis.		CO5				
III	Gametogenesis, embryo sac development and	18	CO1	K1, K2, K3,			
	double fertilization, embryogenesis, establishment		CO2	K4, K5, K6			
	of symmetry, seed formation and germination.		CO3				
			CO4				
			CO5				
IV	Cell aggregation and differentiation in	18	CO1	K1, K2, K3,			
	Dictyostelium. Shoot and root development, leaf		CO2	K4, K5, K6			
	development and phyllotaxy.		CO3				
			CO4				
			CO5				
V	Plant growth regulations, phytochrome and	18	CO1	K1, K2, K3,			
	cryptochrome, plant movement, photoperiodism and		CO2	K4, K5, K6			
	biological clock. Plant hormones. Fruiting and		CO3				
	flowering- Arabidopsis and Antirrhium. Stress		CO4				
	physiology Plant defenses, secondary metabolites.		CO5				
Sugge	sted Readings						
1.	Bewley, J. D., & Black, M. (1985). Seed physiology of d	evelop	ment an	d germination.			
	Plenum Press.						
2.	Copeland, L. O., & McDonald, M. B. (2001) Principles of	seed sc	ciences a	nd technology.			
	Burgers Publ.Co.						
3.	Dwivedi, & Dwivedi. (2005). Physiology of abotic stress	in plar	nts. Agro	bios. India.			
4.	Hopkins, W. G., & Huner, N. P. A. (2004). Introduction to	plant p	physiolog	gy. John Wiley			
	& Sons.						
5.	Levitt, J. (1981). Plant responses to environmental stresse						
6.							
7.							
8.							
	Paul, J. Kramer. (1983). Water Relations of Plants. Acade						
10.	10. Salisbury F. B. and Ross. C. 1992. Plant physiology. Wadsworth Publishing Company,						
Belmont, Califonia.							
11. Srivastav, L. M. (1985). Plant growth and development: Hormones and							
environment. Academic Press.							

Web Resources:

- 1. https://bit.ly/3qmwc3w
- 2. https://bit.ly/3NhNjO7
- 3. https://bit.ly/3IuG1Tk
- 4. https://bit.ly/3rdqcKT
- 5. https://bit.ly/3JjK7hv
- 6. https://bit.ly/375wuFF

Prepared By : Dr. Renilda Sophy A. J

COs	CO Description	Cognitive Level
CO1	To understand the functions of organelles in different biological processes in plants.	K1, K2
CO2	To correlate the role of hormones/enzymes in different physiological functions of the plants.	К3
CO3	To analyze the metabolic pathways of respiration and photosynthesis and mechanism of defense.	K4
CO4	To explain the process of regulation in different biological processes in plants.	K5
CO5	To compile the various steps involved in gametogenesis, embryogenesis, growth and defense in plants.	K6

Course	e Code	PZO2CD01					
Course	e Title	Biogeography and Conservation Biology					
Credits 01							
Hours	/Week	03					
Catego	ory	Cross Disciplinary (CD)					
Semes	ter	П					
Regula	ation	2022					
Biogeo biodive our rap The fie the fiel	specialization.2. To understand the distribution and abundance of species and their changes over time.						
TTereg	luisites	Knowledge in basic biology SYLLABUS					
Unit		Content	Hrs	COs	Cognitive Level		
Ι	History of (Linnaeus) Hennig, Ecosyster Zones, Distributi Global Di Forest,	limatic Zones and Biomes of Biogeography - development of concepts s, Humboldt, Darwin, Wallace, Wegener, Brundin, Croizat). Natural Vegetation and n, Tundra Biomes, Classifying the Bio climatic Biogeography Processes, Geographical on of Fungi, Global Distribution of Plants, stribution of animals, Types and Distribution of Types and Distribution of Fisheries, graphy, Phylogeography	9	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5. K6		

II	Island Biogeography, Marine Biogeography and	9	CO1	K1, K2, K3,
	Paleobiogeography		CO2	K4, K5, K6
	Island biogeography: Islands, including sky islands,		CO3	
	lakes, mountaintops; progression, Equilibrium theory.		CO4	
	Evolution on islands, Endemism, island phenomena;		CO5	
	island rule, taxon cycles gigantism, Adaptive radiation;			
	convergence, Marine biogeography, Open ocean, Marine			
	lakes and shallow waters. Island biogeography of marine			
	organisms. Paleobiogeography & fossils,			
	paleobiogeography & fossils (including the potential &			
	limitations of fossils in biogeographic inference).			
III	Human Biogeography	9	CO1	K1, K2, K3,
	Biogeography of people and languages. Human Impacts,		CO2	K4, K5, K6
	Domestication, agricultural origins, Invasion biology,		CO3	
	Anthropocene and modified dynamics; extinction debts,		CO4	
	Modelling the future, Human Races in India, Ecosystem		CO5	
	Budget, Human Induced Community Change, Major			
	Gene Centre, Geography of Community, Lifestyle of			
	Humankind, Population and Settlement, Man-			
	Environment Relationship, Domestication of life.			
IV	Levels of threats to Biodiversity	9	CO1	K1, K2, K3,
	Biodiversity at global, regional and local levels.		CO2	K4, K5,K6
	Monitoring & measurement of Biodiversity; useful		CO3	
	indices. Threats like overexploitation, fragmentation,		CO4	
	habitat loss, poaching of wildlife, man-wildlife conflicts,		CO5	
	natural calamities, effect of degeneration of biodiversity			
	on future of evolution. Hotspots and Megadiversity			
	Countries, India as a mega-diversity nation; flora & fauna			
	of other Mega diversity countries; Endangered and			
	Endemic species of India:			
V	In-Situ and Ex-Situ Conservation	9	CO1	K1, K2, K3,
	Concept and practice; manipulation of wild populations;		CO2	K4, K5, K6
	control of predators, herbivores and competitors;		CO3	
	management of problem species; captive breeding; plant		CO4	
	propagation; reestablishment and relocation, advance		CO5	
	technology in service of endangered species, zoos and			
	botanical gardens, conservation of plant diversity in seed			

banks, ge	banks, gene banks or germplasm reserves, conservation							
beyond	park,	sanctuaries	&	reserves:	habitat			
conserva	tion. Ma	rine Protected	areas	s.				

- Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: Implications for conservation biogeography. *Diversity and Distributions*, 16(3), 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x
- Angert, A. L., Crozier, L. G., Rissler, L. J., Gilman, S. E., Tewksbury, J. J., & Chunco, A. J. (2011). Do species' traits predict recent shifts at expanding range edges? *Ecology Letters*, 14(7), 677–689. https://doi.org/10.1111/j.1461-0248.2011.01620.x
- 3. Chapman, J.L. & Reiss, M.J. (1999). Ecology: Principles and applications (2nd edition) Cambridge University Press.
- Daily, G. C., Ceballos, G., Pacheco, J., Suzán, G., & Sánchez-Azofeifa, A. (2003). Countryside biogeography of Neotropical mammals: Conservation opportunities in agricultural landscapes of Costa Rica. *Conservation Biology*, *17*(6), 1814–1826. https://doi.org/10.1111/j.1523-1739.2003.00298.x
- 5. Dawson, M. N., & Santos, A. (2016). Island and islandlike marine environments. *Global Ecology and Biogeography*, 25(7), 831–846. https://doi.org/10.1111/geb.12314
- De Meester, L., Vanoverbeke, J., Kilsdonk, L. J., & Urban, M. C. (2016). Evolving perspectives on monopolization and priority effects. *Trends in Ecology and Evolution*, *31*(2), 136–146. https://doi.org/10.1016/j.tree.2015.12.009
- 7. Emerson, B. C., & Gillespie, R. G. (2008). Phylogenetic analysis of community assembly and structure over space and time. *Trends in Ecology and Evolution*, 23(11), 619–630. https://doi.org/10.1016/j.tree.2008.07.005
- Gavin, M. C., & Sibanda, N. (2012). The island biogeography of languages. *Global Ecology and Biogeography*, 21(10), 958–967. https://doi.org/10.1111/j.1466-8238.2011.00744.x
- 9. Ghosh, S.K. & Singh, R. (2003). Social forestry and Forest Management. Global Vision Pub.
- Green, J. L., Harte, J., & Ostling, A. (2003). Species richness, endemism, and abundance patterns: Tests of two fractal models in a serpentine grassland. *Ecology Letters*, 6(10), 919–928. https://doi.org/10.1046/j.1461-0248.2003.00519.x
- 11. Haggett, R. J. (2004). *Fundamentals of biogeography*. Routledge-Taylor and Francis Group.
- 12. Joseph, B. (2008) Environmental studies, Tata McGraw Hill.

- 13. Miller, G.T. (2002). Sustaining the earth, an integrated approach. (5th edition) Books/Cole, Thompson Learning, Inc.
- Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hotspots. In *Biodiversity hotspots* (pp. 3–22). Springer.
- 15. Richardson, D. M., & Whittaker, R. J. (2010). Conservation biogeography–foundations, concepts and challenges. *Diversity and Distributions*, *16*(3), 313–320. https://doi.org/10.1111/j.1472-4642.2010.00660.x
- Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., Grosberg, R. K., Hastings, A., Holt, R. D., Mayfield, M. M., O'Connor, M. I., & Rice, W. R. (2007). Ecological and evolutionary insights from species invasions. *Trends in Ecology and Evolution*, 22(9), 465–471. https://doi.org/10.1016/j.tree.2007.06.009
- 17. Singh, R. B. (2009). Biogeography and biodiversity. Rawat Publication.

Web Resources:

- 1. https://conbio.onlinelibrary.wiley.comm/
- 2. https://www.gsi.gov.in/
- 3. https://ansi.gov.inn/
- 4. https://www.worldwildlife.orgg/
- 5. https://cites.org/engg/
- 6. https://www.undp.org/
- 7. https://www.unep.org/
- 8. https://www.biogeography.org/

Prepared by : Dr. M. C. John Milton

COs	CO Description	Cognitive Level
CO1	To understand, describe and explain the dimensions of biogeography and its relevance to conservation of natural resources.	K1, K2
CO2	To apply, demonstrate and interpret the forms and expressions of biogeographic principles in constructing models and proposing experimental designs to aid conservation policies and initiatives.	К3
CO3	To distinguish, categorise and compare the information pertaining to kinds of biogeography to analyze and appraise conservation of natural resources.	K4
CO4	To summarise, evaluate and criticise the pros and cons of <i>in situ</i> and <i>ex situ</i> conservation in the light of economy, demography and value of biodiversity.	K5
CO5	To compile, organise and formulate methods and protocols to address issues pertaining to the understanding of biogeography and conservation programmes	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PZO2CD02
Course Title	Forensic Biology
Credits	01
Hours/Week	03
Category	Cross Disciplinary (CD)
Semester	II
Regulation	2022

- 1. The fundamental principles and functions of forensic science.
- 2. The significance of forensic science to human society.
- 3. The working of the forensic establishments in India and abroad.
- 4. Beginning to apply knowledge from all scientific disciplines to the study of crime.
- 5. Apply forensic science research to the development of highly discriminating, accurate, reliable, cost-effective, rapid methods for the identification, analysis and interpretation of physical evidence.
- 6. Produce professional graduates with critical thinking, analysis abilities, laboratory skills and problem-solving skills.

- 1. To define forensic science and describe various areas related them to modern day practice.
- 2. To emphasize the importance of scientific methods in crime detection.
- 3. To get the information on careers in forensic science.
- 4. To recognise, identify, examine and testify any and every kind of physical evidence mostly found in crime scenes.
- 5. Produce graduates who demonstrate ethical backgrounds, articulate the ethical and professional standards of the discipline.
- 6. To provide a platform for students and forensic scientists to exchange views, collaborative programs and work in a holistic manner for the advancement of forensic science.
- 7. To write report on different type of crime cases.

Prerequisites	Knowledge in Biology
---------------	----------------------

	SYLLABUS			
Unit	Content	Hrs	COs	Cognitive
				Level
Ι	History & Development of Forensic Science	9	CO1	K1, K2, K3,
	Definition, History & Development, Scope, Ethics in		CO2	K4, K5, K6
	Forensic Science Nature, Types, Search methods,		CO3	
	Collection, Preservation, Packing & Forwarding of		CO4	
	Physical & Trace evidence for forensic analyses,		CO5	
	Custody. Crime Scene: Unnatural deaths, Criminal			
	assaults, Sexual offences, Poisoning, Vehicular			
	accidents Courts: Types, powers and jurisdiction,			
	Admissibility of evidence. Organization of Forensic			
	Science Laboratories of Centre and State, NCRB and			
	NICFS Fundamental Rights: Right of Equality (Articles			
	14 to 18) and Right of Freedom (Articles 19 to 22) as			
	per Constitution of India. Criminal Profiling: Profile of			
	victim and culprit, its role in crime investigation, Lie			
	detection (Polygraphy), Brain mapping,			
II	Tools and Techniques in Forensic Science	9	CO1	K1, K2, K3,
	Microscopy, Stereoscopic, Fluorescent and Electron		CO2	K4, K5, K6
	Microscopes. Spectrophotometry: UV, Visible, IR,		CO3	
	Atomic absorption, X – rays, XRD, ,Mass		CO4	
	Spectroscopy. Chromatographic Techniques: TLC,		CO5	
	GLC, HPLC, HPTLC, GC-MS, LC-MS, IR-MS and			
	ICP-MS. Electrophoresis:Immunoassays: Principle,			
	Types, Techniques and applications.			
III	Sample Analysis in Forensic Science	9	CO1	K1, K2, K3,
	Detection and Identification of Blood stains. Blood		CO2	K4, K5, K6
	Group Systems. Detection of Seminal and other body		CO3	
	fluids and their Blood. Disputed Paternity & Maternity.		CO4	
	DNA: Structure, DNA as genetic marker, DNA		CO5	
	Extraction and Profiling Techniques and RNA Profiling			
	& their applications. Analysis of Ethyl alcohol in			
	beverages, liquors, biological fluids, liquors. Analysis			
	of Chemicals in Trap Cases. Insecticides & Pesticides,			
	& Sedatives, Narcotics, Drugs of abuse and their			
	Toxicity Plant poisons			

IV	Forensic Investigation	9	CO1	K1, K2, K3,
	Fire and Arson: Analyses of Petroleum Products and		CO2	K4, K5, K6
	other incendiary materials. Explosives: Definition,		CO3	
	Types and Analyses. Bombs: Country made bombs,		CO4	
	Improvised Explosive Devices (IEDs)and their		CO5	
	examination. Investigation in Explosion and Arson			
	related cases. Photography: Types, application in			
	criminal investigation & Forensic evidence			
	examination. Hair & Fibers: Nature, Types, Structure			
	and Examination. Pollens and Diatoms: Their			
	application in Forensic investigation. Dust & Soil:			
	Nature, Types, Forensic Examination. Paint, Lacquer &			
	Varnishes: Nature, composition and forensic			
	examination. Glass: Composition, Types, Fractures,			
	Examination. Cement, Mortar and Concrete: General			
	Composition, Forensic Analysis. Computer Forensics:			
	Introduction, Types of Computer crimes, Digital			
	evidence- Seizure, Acquisition and Forensic			
	examination. Mobile Phone Forensics.			
V	Examination, Documentation and Report writing	9	CO1	K1, K2, K3,
	Forensic Science		CO2	K4, K5, K6
	Biology: Comparison of the suspect's and victim's		CO3	
	body fluids and hair; most often DNA analysis.		CO4	
	Chemistry: Identifying non-biological substances		CO5	
	found at a crime scene, such as paint, glass, liquids,			
	fuels, and explosive substances. Toxicology: The			
	examination of body fluids to determine the level of			
	alcohol present in the body, and providing expert			
	opinions in relation to the extent of intoxication.			
	Documents Examination: The analysis of documents			
	to determine authenticity for fraud allegations. Can also			
	provide handwriting comparison. Firearms Ballistics:			
	Matching shells, casing, and fired bullets to a weapon			
	and making a determination of bullet trajectory. Tool			
	mark examination: Matching tool impressions to an			
	originating suspect tool.			

- 1. Dahiya, M. S. (2015). Priciples and practices in contemporary forensic sciences, shanti Prakashan.
- 2. James, S. H., & Nordby, J. J. (2005). Forensic science: An introduction to scientific and investigative techniques (2nd ed). CRC Press Press.
- 3. Krishnamachari, V. (2017). Law of evidence (7th ed), S. Gogia, & Company.
- 4. Maloney, M. S. (2014). Crime Scene Investigation: Procedural Guide, CRC Press.
- 5. Robert, C. (2011). Shaler, crime scene forensics: A scientific method approach. CRC Press.
- 6. Tilstone, W. J., Hastrup, M. L., & Hald, C. (2013). Fisher's techniques of crime scene investigation. CRC Press Press.
- 7. Vij, K. (2014). Textbook of forensic medicine and toxicology: Principles and practice— E-book. Elsevier India. ISBN: 8131237850, 9788131237854.

Web Resources:

- 1. https://bit.ly/3G3jQ6a
- 2. https://bit.ly/3KHqRg3
- 3. https://bit.ly/3GRJBqB
- 4. https://bit.ly/3IqswV2
- 5. https://bit.ly/3qUM0eO
- 6. https://bit.ly/3Ky81Yz

Prepared by : Dr. V. Pushpa Rani

COs	CO Description	Cognitive Level
CO1	To understand and Gain knowledge about crime and its elements.	K1, K2
CO2	To demonstrate skill in handling clinical equipment	К3
CO3	To explain the characteristics of clinical samples analysis.	K4
CO4	To evaluate role of the Forensic scientist and physical evidence within the criminal justice system.	K5
CO5	To identify and Inspect crime detection and prevention	K6

Course Code	PZO3VA01					
Course Title	Apiculture, Sericulture and Lac Culture					
Credits 01						
Hours/Week 02						
Category	Value Added (VA)					
Semester	III					
Regulation	2022					
Course Overvie	W					
1. The cours	se would provide knowledge on bee keeping, se	ericultur	e and l	ac culture and		
throw light	nt on the importance of pursuing them as a leisur	e activi	ty and e	entrepreneurial		
venture.						
2. Knowled	ge gained and skills acquired would enhanc	e expe	rtise in	this area of		
specializa	tion and would promote self-employment.					
Course Objectiv	/es					
-	knowledge on apiculture, sericulture and	Lac c	ulture	and take up		
entrepren	•					
-	ve the technical knowledge on bee keeping, silk		-			
3. To develo	op and promote technical expertise in economic 2	zoology	for ent	repreneurship.		
Prerequisites	Knowledge in basic biology					
	SYLLABUS					
Unit	Content	Hrs	COs	Cognitive		
				Level		
I Hive Be	es and Bee Keeping	6	CO1	K1, K2, K3,		
History	of beekeeping, beekeeping in India. Species of		CO2	K4, K5. K6		
true hon	ey bees (belonging to genus <i>Apis</i>) in the world:		CO3			
Rock be	e, Apis dorsata, Little bee, A. florea, Asian bee,		CO4			
A. cera	na and European bee, A. mellifera. General		CO5			
morpho	logy and anatomy of honey bee. Colony					
	ation, division of labour and life cycle. Social					
behavio	r honey bees.					

II	Equipment and Tools of Bee Keeping	6	CO1	K1, K2, K3,
	Bee hive construction, types and installation. Handling		CO2	K4, K5, K6
	of honey bee colony and maintenance of apiary record.		CO3	
	Collection and preservation of bee pasture. Seasonal		CO4	
	management of honey bee colonies (Spring, Summer,		CO5	
	Monsoon, Autumn and Winter Management).			
	Migratory bee keeping. Dividing, uniting, queen			
	management, supplementary feeding, shifting bee			
	colonies, robbing, absconding. Manipulations for			
	Honey Production. Economics of bee keeping. Queen			
	rearing. Familiarization with Enemies of Honey Bees			
	and their Control. Familiarization with diseases of			
	honey bees and their control.			
III	Silkworm Biology	6	CO1	K1, K2, K3,
	Life cycle of Bombyx mori; morphology of egg, larva,		CO2	K4, K5, K6
	pupa and adult. Morphology and anatomy of digestive,		CO3	
	circulatory, excretory, respiratory, nervous system of		CO4	
	silkworm larva. Morphology and anatomy of		CO5	
	reproductive systems of silk moth. Morphology and			
	anatomical structure of Silk gland. Life cycle of Bombyx			
	mori- Morphology of egg, larva, pupa and adult of			
	Bombyx mori. Sex separation in larva, pupa and adult of			
	the silkworm <i>Bombyx mori</i> .			
IV	Mulberry Cultivation and Silkworm Rearing	6	CO1	K1, K2, K3,
	Mulberry cultivation: Propagation of mulberry-		CO2	K4, K5,K6
	seedling, sapling , grafting and layering. Raising of		CO3	
	commercial nursery. Establishment of mulberry garden		CO4	
	under rain-fed and irrigated conditions. Manures and		CO5	
	fertilizers. Intercultivation practices. Irrigation, Leaf			
	harvesting Importance of leaf quality. Silkworm			
	rearing: Rearing house, Rearing appliances,			
	Disinfection, Selection of silkworm races/breeds for			
	rearing, Incubation, Chawki rearing, Late age silkworm			
	rearing, Identification of spinning larva, Harvesting.			

V	Lac Culture	6	CO1	K1, K2, K3,
	Lac insect taxonomy, distribution, life cycle, host		CO2	K4, K5, K6
	plants, strains of lac insect, lac cultivation, local		CO3	
	practice, improved practice. Propagation of lac insect,		CO4	
	inoculation period, harvesting of lac, composition of		CO5	
	lac, lac processing, stick lac, seed lac, shellac,			
	handmade process, heat process, solvent processes. Lac			
	products and their use, lac dye, lac wax, shellac,			
	bleached shellac, dewaxed bleached shellac, aleuritic			
	acid (shellac aleuritic powder).			
Sugge	ested Readings			
1.	Charsley, S.R. (1982). Culture and Sericulture. Academic	Press In	ic., New	York, U.S.A
2.	Ganga, G., & J. Sulochana Chetty. (1991) An Introducti	on to S	ericultu	re. Oxford &
	IBH Publishing Company.			
3.	Gatoria, G.S., Gupta, J. K., Thakur, R.K. and Singh, J. (20	011). Ma	ass quee	en bee rearing
	and multiplication of honey bee colonies. All India Co-ord	inated p	project o	on honey bees
	and pollinators, ICAR, HAU, Hisar, p70.			
4.	Ghorai, N. (1995). Lac-culture in India. India: Interna	tional H	Books &	& Periodicals
	Supply Service.			
5.	Glover, P. M. (1937). Lac Cultivation in India: A	Practio	cal Ma	nual of Lac
	Cultivation. (n.p.): Indian Lac Research Institute.			
6.	Graham, J M (1992) The hive and the honey bee. Dadant a	and Son	s, Hami	ilton, IIIinois.
7.	Gupta, J K. (2010). Spring Management of honey be	ee colo	nies. Ir	n "OAPI-012
	Management of honey bee colonies; Seasonal and spec	ific ma	nageme	nt (Block 2),
	Indira Gandhi National open university, school of Agricul	ture, Ne	ew Delh	i, UNIT-I, pp
	5-14, p 105.			
8.	Gupta, J K. (2010). Management in autumn season. In	"OAPI-	012 Ma	anagement of
	honey bee colonies; Seasonal and specific management	t (Bloc	k 2), I	ndira Gandhi
	National open university, school of Agriculture, New Delh	i, UNIT	-IV, pp	34-40, p 105.
9.	Gupta, J K. (2010). Management in monsoon season. In	"OAPI-	-012 M	anagement of
	honey bee colonies; Seasonal and specific management			
	National open university, school of Agriculture, New Delh	i, UNIT	-III, pp	26-33, p 105.
10	. Gupta, J K. (2010). Management in summer. In "OAPI-01	2 Mana	igement	of honey bee
	colonies; Seasonal and specific management (Block 2), I	ndira G	andhi N	National open
	university, school of Agriculture, New Delhi, UNIT-II, pp	15-25,	p 105.	

- 11. Gupta, J K. (2010).Management in winter. In "OAPI-012 Management of honey bee colonies; Seasonal and specific management (Block 2), Indira Gandhi National open university, school of Agriculture, New Delhi, UNIT-V, pp 41-50, p 105.
- Gupta, J.K., Sharma, H K & Thakur, R K. 2009. Practical Manual on Beekeeping. Department of Entomology and Apiculture, Dr Y S Parmar University of Horticulture and Forestry, Nauni, Solan, p 83.
- Hasao Aruga (1994). Principles of Sericulture (Translated From Japanese) Oxford & Ibh Publishing Co., Pvt. Ltd. New Delhi.
- 14. Jabde, P. V. (2005). Text Book Of Applied Zoology. India: Discovery Publishing House Pvt. Limited.
- 15. Kichisaburo M. (1997) Moriculture Science of Mulberry Cultivation. Oxford & IBH
- 16. Krishnaswami, S.; Narasimhanna, M.N.; Suryanarayan, S.K And Kumararaj, S. (1973) Sericulture Manual-2 - Silkworm Rearing. Agriculture Service Bulletin, FAO, Rome.
- 17. Mishra R.C. (1995) Honey bees and their management in India. ICAR Publication, New Delhi.
- Rajanna, L., Das, P.K., Ravindran, S., Bhogesha, K., Mishra, R.K., Singhvi, N.R., Katiyar, R.S. & Jayaram, H. (2005) Mulberry Cultivation and Physiology. Central Silk Board, Bangalore.
- Rangaswami, G.; Narasimhanna, M.N.; Kasiviswanathan, K., Sastry, C.R. & Jolly, M.S. (1976) Sericulture Manual-1- Mulberry Cultivation. Agriculture Services Bulletin, FAO, Rome.
- 20. Sharma, K. K., Ramani, R.& Jaiswal, A. K. (2011). LAC Culture Operations When, why &How?. India: Indian Institute of Natural Resins and Gums.
- 21. Singh, J. P & Jaiswal, A. K. (2010). How to Culture Lac Insect on *Schleichera oleosa* (Kusum) Tree?. India: ICAR, Indian Institute of Natural Resins and Gums.

Web Resources:

- 1. https://icar.org.in/
- 2. http://www.csrtimys.res.in//
- 3. http://www.csrtiber.res.in//
- 4. https://csb.gov.in//
- 5. https://cmerti.res.in//
- 6. https://iinrg.icar.gov.in//
- 7. https://www.kvic.gov.in//
- 8. https://www.iihr.res.in//
- 9. https://nbb.gov.in/

Prepared by : Dr. M. C. John Milton

COs	CO Description	Cognitive Level
CO1	To understand, identify and recognise areas and specialization in the field of zoology for the promotion of entrepreneurial ventures.	K1, K2
CO2	To explore, apply and demonstrate the possibilities of animal rearing methods and illustrate and promote self-employment.	К3
CO3	To compare, categorise and explain the efficiency of cultivable species of insects and propose appropriate species types and methods to promote entrepreneurship.	K4
CO4	To summarize and appraise the different methods of culturing beneficial insects and recommend and promote insect culturing as a recreational activity and business venture.	K5
CO5	To design, formulate and construct insect culture models for small, medium and large scale industries.	K6

Course Outcomes (COs) and Cognitive Level Mapping

	e Code	PZO3VA02					
Course	e Title	Freshwater and Brackish water Aquaculture					
Credit	S	01					
Hours/	Week	02					
Hours/Week 02 Category Value Added (VA)							
Category Value Added (VA) Semester III							
Regula	tion	2022					
 Course Overview This course offers an insight on the scientific practices involved in the culture, rearing and marketing of fishery resources from fresh and brackish water habitats. The knowledge gained would promote entrepreneurship. Course Objectives To know the present status of freshwater and brackish water aquaculture and their rol in world economy and food production. To gain knowledge on carp, prawn, shrimp and crab culture and composite fish cultur systems. To improve the technical knowledge on fish and shrimp hatchery technology and cultur practices. To improve the knowledge and technical skills for the identification of cultivable finfish and shellfish. 							
		SYLLABUS					
Unit I		SYLLABUS Content	Hrs	COs CO1	Cognitive Level K1, K2, K3,		

	systems (rain fed ponds, irrigated or flow-through			
	systems, tanks and raceways). Recycling systems (high			
	control enclosed systems, more open pond based			
	recirculation).			
TT		6	CO1	V1 V2 V2
II	Reservoir fisheries & Integrated Farming	0		K1, K2, K3,
	Inland water bodies suitable for culture in India. Major		CO2	K4, K5, K6
	reservoirs in India, measures for increasing production		CO3	
	from reservoirs in India. Recent development in		CO4	
	integrated farming – Rice cum fish culture, Duck cum		CO5	
	fish culture, Poultry cum fish culture and Pig cum fish			
	culture. Organic aqua farming. Aquaculture for stable			
	environment: Sewage fed fish culture, sewage			
	treatment, Sewage cum fish culture in India. Fish in			
	relation to public health - Larvivores fishes and			
	mosquito eradication using fishes.			
III	Culture of crustaceans and molluscs	6	CO1	K1, K2, K3,
	Cultivable species of freshwater and brackish water		CO2	K4, K5, K6
	prawns and their biology. Culture of Penaeus monodon,		CO3	
	Penaeus indicus, Litopenaeus vannamei. Essentials of		CO4	
	prawn Hatchery; Culture management techniques of		CO5	
	Nursery and Grow-out ponds. Freshwater pearl culture			
	- Present status of freshwater pearl culture and			
	production in India. Culture of pearl oysters. Fish and			
	shellfish culture in cages and pens. Crab culture (Scylla			
	serrata, Scylla occeanica and Charybdis sp.): Pond			
	design, management of crab farm, fattening process of			
	crab. Culture of sea weeds: Commercial importance of			
	seaweed species. Extensive, semi-intensive and			
	intensive shrimp farming practices.			
IV	Ornamental Fish culture and Aquarium plants	6	CO1	K1, K2, K3,
	Breeding of ornamental fish with reference to live		CO2	K4, K5,K6
	bearer species. Breeding of Guppies, Mollies, Sward tail		CO3	
	fish and Platy fish. Breeding of ornamental fish with		CO4	
	reference to selected egg layer species. Breeding of		CO5	
	Angel fish, Zebra fish and Neon tetra. Hatchery and			
	nursery management system for live bearers and egg			
	layers. Ornamental Fish-diseases and their			

			-	
	management. Live Food culture for tropical ornamental			
	fish. Aquarium plants and its propagation techniques.			
	Management of ornamental aquatic plants and its			
	trading.			
V	Hatchery technology in aquaculture	6	CO1	K1, K2, K3,
	Hatchery management-seed production of carps.		CO2	K4, K5, K6
	Hypophysation of Indian major carps and exotic carps,		CO3	
	history of hypophysation. Pituitary gland. Collection		CO4	
	and preservation of gland. Other ovulating agents.		CO5	
	Brood stock management, sexing, dosage for injection,			
	mechanism of ovulation. Carp Production System and			
	Seed production of other Fishes. Transport of fish seed			
	and brood fishes. Causes of mortality during transport,			
	techniques of transport, open and closed systems,			
	methods of transportation, use of anaesthetics. Carp			
	seed resources in major rivers India. Bundh breeding,			
	types of bundh breeding techniques. Problems of bundh			
	breeding. Seed Production of Crustaceans and			
	Molluscs. Seed production and nursery rearing of			
	Penaeus indicus, Penaeus monodon and			
	Macrobrachium rosenbergii. Hatchery operations of			
	pearl oysters, crabs, lobster. Hatchery Management and			
	Design of shrimp hatcheries. Site selection. Operation			
	and management of maturation section. Operation and			
	management of larval section. Operation and			
	management of post larval section. Live feed culture			
	system, Mechanical and biological filters.			
Suggo	ated Readings			

Suggested Readings

- 1. Blackwell Rath, R. K. (2000). Freshwater aquaculture. Scientific Publishing.
- 2. Boyd, C. E. (1982). *Water quality management for pond Fish culture. Elsevier Sci. Publ.* CO.
- 3. Chakraborty, C., & Sadhu, A. K. (2000). *Biology hatchery and culture technology of tiger prawn and giant freshwater prawn. Daya Publ. House.*
- 4. CIFE. (1993). *Training manual on culture of live food organisms for aqua hatcheries*. CIFE.
- 5. De Silva, S. S., & Anderson, T. A. (1995). *Fish nutrition in aquaculture. Chapman and hall aquaculture series.*

- 6. Food and Agriculture Organization. (2007). Manual on freshwater prawn farming.
- 7. Huet, J. (1986). A textbook of Fish Culture. Fishing News Books Ltd.
- 8. Indian Council of Agricultural Research. (2006). *Hand book of fisheries and aquaculture*. Indian Council of Agricultural Research.
- 9. Jhingran, V. G. (1998). Fish and fisheries of India. Hindustan Publishing Corporation.
- 10. Bardach, J. E., Ryther, J. H., & McLarney, Wm. O. (1972). *Aquaculture: The farming and husbandry of freshwater and marine organisms*. John Wiley & Sons.
- 11. Landau, M. (1992). Introduction to aquaculture. John Wiley & Sons.
- 12. Mcvey, J. P. (1983). Handbook of mariculture. CRC Press.
- 13. New, M. B. (2000). Freshwater prawn farming. CRC Press Publishing.
- 14. Pillay, T. V. R., & Kutty, M. N. (2005). *Aquaculture- principles and practices* (2nd ed). Blackwell Publishing.
- 15. Rath, R. K. (2000). Freshwater aquaculture. Scientific Publishing.
- 16. Stickney, R. R. (1979). Principles of warmwater Fish culture. John Wiley & Sons.

Web Resources:

- 1. https://www.fao.org/aquaculture/en/
- 2. https://www.cmfri.org.in//
- 3. https://fsi.gov.in//
- 4. http://www.ciba.res.in//
- 5. https://cifnet.gov.in//
- 6. https://www.agrifarming.in//
- 7. www.mpeda.com
- 8. www.cifa.in/
- 9. www.ofish.org
- 10. www.nabard.org/english/fish_ornamental_fish.aspx

Prepared by : Dr. M. C. John Milton

COs	CO Description	Cognitive Level
CO1	To understand, identify, recognise and popularise the potential of aquaculture and promote self-employment.	K1, K2
CO2	To explore, apply and demonstrate cost effective aquaculture practices for entrepreneurial ventures	К3
CO3	To compare, categorise and explain the efficiency of cultivable species of fishes and propose appropriate species types and methods to impart employable skills and promote entrepreneurship.	K4
CO4	To summarize and appraise the different methods of culturing fishes and recommend and promote aquaculture as a recreational activity and business venture.	K5
CO5	To design, formulate and construct business models for small, medium and large scale industries.	K6

Course Outcomes (COs) and Cognitive Level Mapping

LOCF BASED DIRECT ASSESSMENTS

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED CIA QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	COGNITIVE LEVEL (CL)						
		, F	K1	К2	K3	K4	K5	K6	
Α	(5 x 1 = 5)	1(a)	+						
	Answer ALL	(b)	+						
		(c)	+						
		(d)	+						
		(e)	+						
	(5 x 1 = 5)	2(a)		+					
	Answer ALL	(b)		+					
		(c)		+					
		(d)		+					
		(e)		+					
В	(1 x 8 = 8)	3			+				
	Answer 1 out of 2	4			+				
С	(1 x 8 = 8)	5				+			
	Answer 1 out of 2	6				+			
D	(1 x 12 = 12)	7					+		
	Answer 1 out of 2	8					+		
Ε	(1 x 12 = 12)	9			1			+	
	Answer 1 out of 2	10						+	
No. of CL based Questions with Max. marks		arks	5 (5)	5 (5)	1 (8)	1 (8)	1 (12)	1 (12)	
lo. of CO bas	ed Questions with Max. m	arks	С	01	CO2	CO3	CO4	CO5	
		Г	10	(10)	1 (8)	1 (8)	1 (12)	1 (12)	

Forms of questions of **Section A** shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters. Questions of **Sections B, C, D and E** could be Open Choice/ built in choice/with sub sections. Component III shall be exclusively for cognitive levels K5 and K5 with 20 marks each. CIA shall be conducted for 50 marks with 90 min duration.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034

Department of Advanced Zoology and Biotechnology

FIRST CONTINUOUS ASSESSMENT TEST, JULY, 2022

PZO2MC04 Cellular Organization and Molecular Processes (MC)

I MSc Zoology

15.07.2022

Time : 10.00am to 11.30 am

Max. Marks : 50

	SECTION A		
Ansv	ver ALL the Questions		
1.	Define the following	(5 x 1	= 5)
a)	PPLO.	K1	CO1
b)	Resolving power of a microscope.	K1	CO1
c)	Suicide bags.	K1	CO1
d)	Transcription.	K1	CO1
e)	Genetic code.	K1	CO1
2.	Fill in the blanks	(5 x 1	= 5)
a)	Uncontrolled proliferation of cells is known as	K2	CO1
b)	is a vital stain.	K2	CO1
c)	Proliferative cell division is known as	K2	CO1
d)	is an example for a fixative.	K2	CO1
e)	is an example for an oncogene.	K2	CO1
	SECTION B	k	
Ansv	ver any ONE of the following in 250 words	(1 x 8 =	= 8)
3.	Classify 'Endoplasmic reticulum' giving reasons	K3	CO2
4.	Illustrate the animal cell and enumerate points on cell organelles	K3	CO2
	SECTION C	i.	
Ansv	ver any ONE of the following in 250 words	(1 x 8 =	= 8)
5.	Analyse the role of ribosomal subunits in protein synthesis	K4	CO3
6.	Distinguish the roles of Euchromatin and Heterochromatin.	K4	CO3
	SECTION D		
Ansv	ver any ONE of the following in 500 words	(1 x 12 =	= 12)
7.	Compare the intrinsic and extrinsic properties of DNA.	K5	CO4
8.	Evaluate the ultrastructure, composition and functions of cytoplasm.	K5	CO4
	SECTION E	į	.i
Ansv	ver any ONE of the following in 500 words	(1 x 12 =	: 12)
9.	Summarize the structure, composition and functions of cytoplasm.	K6	CO5
10.	Double helical structure provides stability to DNA – Substantiate.	K6	CO5

SECTION		Q. NO	COGNITIVE LEVEL (CL)							
			K1	K2	К3	K4	K5	K6		
Α	(5 x 1 = 5)	1(a)	+							
	Answer ALL	(b)	+							
		(c)	+							
		(d)	+							
		(e)	+							
ľ	(5 x 1 = 5)	2(a)		+						
	Answer ALL	(b)		+						
		(c)		+						
		(d)		+						
		(e)		+						
В	$(3 \ge 10 = 30)$	3			+					
	Answer 3 out of 5	4			+					
		5			+					
		6			+					
		7			+					
С	(2 x 12.5 = 25)	8				+				
	Answer 2 out of 4	9				+				
		10				+				
		11				+				
D	(1 x 15 = 15)	12					+			
	Answer 1 out of 2	13					+			
Ε	$(1 \ge 20 = 20)$	14						+		
	Answer 1 out of 2	15						+		
No. of CL bas	ed Questions with Max. m	arks	5 (5)	5 (5)	3 (30)	2 (25)	1 (15)	1 (20)		
No. of CO bas	ed Questions with Max. n	narks	C	01	CO2	CO3	CO4	CO5		
		F	10	(10)	3 (30)	2 (25)	1 (15)	1 (20)		

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT (PG)

IMPORTANT

- Forms of questions of Section A shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters.
- Questions of Sections B, C, D and E could be Open Choice/ built in choice/questions with sub divisions.
- Maximum sub divisions in questions of Sections B, C shall be 2 and 4 in Sections D, E).

UNIT WISE DISTRIBUTION OF CL AND CO BASED QUESTIONS AND MARKS FOR END OF SEMESTER QUESTION PAPER SETTING (PG)

	SECT	TION A	SECTION B	SECTION C	SECTION D	SECTION E
	K1	K2	К3	K4	К5	K6
UNIT I	1 (1)	1 (1)	1 (12.5)			
UNIT II	1 (1)	1 (1)	1 (12.5)	1 (12.5)	1 (20)	
UNIT III	1 (1)	1 (1)	1 (12.5)	1 (12.5)	1 (20)	
UNIT IV	1 (1)	1 (1)	1 (12.5)	1 (12.5)		1 (20)
UNIT V	1 (1)	1 (1)	1 (12.5)	1 (12.5)		1 (20)
No. of CL based Questions with Max. Marks	5 (5)	5 (5)	3 (30)	2 (25)	1 (15)	1 (20)
No. of CO based Questions with Max. Marks	C	CO1		CO3	CO4	CO5
	10	(10)	3 (30)	2 (25)	1 (15)	1 (20)

TOTAL MARKS DISTRIBUTION OF DIRECT ASSESSMENTS BASED ON CL AND CO (PG)

Course Outcome	CO1		CO2	CO3	CO4	CO5	TOTAL
Cognitive Levels	K1	K2	K3	K4	K5	K6	
CIA 1	5	5	8	8	12	12	50
CIA 2	5	5	8	8	12	12	50
Comp III	-	-	-	-	20	20	40
Semester	5	5	30	25	15	20	100
Total Marks (CL)	15 (6%)	15 (6%)	46 (19%)	41 (17%)	59 (25%)	64 (27%)	240
Total Marks (CO)	30 (12%)		46 (19%)	41 (17%)	59 (25%)	64 (27%)	240

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034

Department of Advanced Zoology and Biotechnology

END SEMESTER EXAMINATION, OCTOBER, 2022

PZO2MC04 Cellular Organization and Molecular Processes (MC)

I MSc Zoology

Duration : 3 hrs

15.11.2022

Max. Marks: 100

		SECTION A		
Ansv	wer ALL the Que	stions		
1.	Match the follo	wing	(5 x 1	= 5)
a)	BRCA1	DNA	K1	CO1
b)	G1 Phase	Codon	K1	CO1
c)	Centriole	Chromosome	K1	CO1
d)	Replication	Cancer marker	K1	CO1
e)	UGG	mRNA	K1	CO1
2.	TRUE or FALS	SE	(5 x 1	= 5)
a)	All cells have a	cell wall.	K2	CO1
b)	Chromosomes a	re found in the cytoplasm.	K2	CO1
c)	There is a cell m	embrane around all cells.	K2	CO1
d)	All cells have a	K2	CO1	
e)	A nucleus is sma	aller than a molecule.	K2	CO1
		SECTION B		
Ansv	wer any THREE o	of the following in 500 words	(3 x 10 =	= 30)
3.	Explain Signal p	peptide hypothesis.	К3	CO2
4.	Illustrate and exp	plain the structure and principle behind SEM.	К3	CO2
5.	Prepare and pres	sent the protocol of tissue sectioning by microtome.	К3	CO2
6.	Write down the	details on Fluid Mosaic model of plasma membrane.	К3	CO2
7.	Analyse the role	of ribosomal subunits in protein synthesis.	К3	CO2
		SECTION C		
Ansv	wer any TWO of t	the following in 500 words	(2 x 12.5 =	= 25)
8.	Analyse the role	of macrophage in defence mechanism.	K4	CO3
9.	Classify cell org	anelles giving reasons.	K4	CO3
10.	Compare the stru	uctural properties of plant and animal cell.	K4	CO3
11.	Correlate the det	ails on ribosomal subunits with protein synthesis.	K4	CO3
	••••			

	SECTION D		
Answer any ONE of the following in 1000 words		(1 x 15 = 15)	
12.	Evaluate details on the following	K5	CO4
	a) Types of cancer		
	b) Causes of cancer		
	c) Prognosis of cancer		
	d) Diagnosis of cancer.		
13.	Summarise the details on the following with illustrations.	K5	CO4
	a) Mitosis		
	b) Meiosis		
	SECTION E		
Answer any ONE of the following in 1000 words		$(1 \ge 20 = 20)$	
14.	Double helical structure gives stability to DNA molecule - Organise your defence	K 6	CO5
	on the following lines.		
	a) Bonding and base pair		
	b) Base pairing mechanism		
15.	Summarise the road map for cell cycle and gene manipulation (or) Formulate the	, Кб	CO5
	methodology involved in the synthesis of recombinant DNA technology and vaccine	•	
	production.		