LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

SIXTHSEMESTER - APRIL 2017

CH 6612- MOLECULAR DYNAMICS

Date: 18-04-2017 Dept. No. Max.: 100 Marks

Time: 09:00-12:00

PART-A

Answer ALL Questions:

 $(10 \times 2 = 20 \text{ marks})$

01) State Wien's displacement law.

- 02) The distance between Chennai to Delhi is approximately 2000 Km. How long will it take from Chennai to Delhi if you travel in a vehicle which moves with a constant speed equal to that of an electron in the first orbit of Hydrogen atom?
- 03) $\Psi = 3xe^{-4x}$ is an eigen function of the operator d^2/dx^2 . Find the eigen value corresponding to the operator.
- 04) Write the boundary conditions for a particle confined to move in a one dimensional box.
- 05) A system has a partition function equal to $\frac{1}{2}$ What do you understand from this value?
- 06) Translational partition function of a gas increases as the volume of the gas increases. Give reason.
- 07) Distinguish between Internal conversion and Inter system crossing.
- 08) Solutions that are used in photochemical studies must be deoxygenated before the commencement of reaction. Give reason.
- 09) What are fast reactions? Give an example.
- 10) Write the mechanism of photochemical reactions between H₂ and Cl₂.

PART-B

Answer any EIGHT Questions:

 $(8 \times 5 = 40 \text{ marks})$

- 11) Calculate the wavelength (in nm) of the longest wavelength radiation emitted in Brackett series of Hydrogen spectrum.
- 12) For the 100 face of silver metal the velocity of electrons emitted using 200nm photons is 7.42 x10⁵ ms⁻¹. Calculate the work function of this face in eV.
- 13) Find the values of the following
 - a) $\Delta x . \Delta p_x b$) $\Delta x . \Delta p_y$
- c) $\Delta x . \Delta p_z$
- 14) Write the postulates of quantum mechanics.
- 15) Calculate the energy of the first excited state of an electron confined to move in a one dimensional nanowire of length 10 nm.
- 16) Derive the relation between partition function and internal energy of a system.
- 17) Write short account on the concept of Residual entropy.
- 18) State (a) Grotthus-Drappers's law and (b) Einstein's law of photochemical equivalence.
- 19) Write notes on the Mechanism of photosynthesis.
- 20) Distinguish between Fluorescence and Phosphorescence.
- 21) Describe the kinetics of photochemical reaction between H_2 and Br_2 .
- 22) Elaborate the reasons for obtaining low and high quantum efficiencies.

PART-C Answer any FOUR Questions:	(4 x 10 = 40 marks)
23) a) Explain Einstein's view on "Photoelectric emission"	(6)
b) What is Zeemann effect? Give its significance.	(4)
24) Derive the expression for the energy and wavefunction for a particle confined to move in a one	
dimensional box of length 'L' and infinite potential barrier.	(10)
25) a) Evaluate translational partition function for oxygen atoms at 300K contained in a volume of 22.4	
dm ³ .	(5)
b) Explain the significance of the Boltzmann distribution. What does this distribution describe?	
26) a) Explain the depopulation pathways that occur between the first excited excited triplet state.	(5) d singlet state and the first
b) Write notes on chemiluminescence.	(5)
27) Describe in detail flash photolysis.	(10)
28) a) Show that the molecular partition function of a diatomic molecule is g	given by $q = q_t q_r q_v q_e$
	(5)
b) Explain in detail 'Photosensitization'.	(5)
