LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

THIRDSEMESTER - APRIL 2017

CH 920 - CHEMICAL KINETICS

Date: 02-05-2017 Dept. No. Max.: 100 Marks

Time: 09:00-12:00

Part-A

Answer ALL questions.

 $(10 \times 2 = 20)$

1. What is volume of activation? Mention its significance.

- 2. The rate constant for a second order reaction is 5.23×10^{-2} dm³ mol⁻¹s⁻¹. Calculate its half-life if the initial concentration of the reactant is 0.03 mol dm⁻³.
- 3. State Lindemann-Christiansen hypothesis of unimolecular reactions.
- 4. Write the assumptions of conventional transition state theory.
- 5. Define Hammett acidity function and mention its significance.
- 6. What is capillary condensation?
- 7. Distinguish between protropic and protolytic mechanisms in acid catalysis.
- 8. Write Taft equation and mention the terms involved in it.
- 9. Calculate the enthalpy of activation for a unimolecular reaction having activation energy of 22.5 kJ mol⁻¹at 60 °C.
- 10. Write the principle of flow techniques in studying the kinetics of fast reactions.

Part-B

Answer any EIGHT questions.

 $(8 \times 5 = 40)$

- 11. Explain any two methods for the determination of order of a reaction.
- 12. Discuss the kinetics of unimolecular reactions.
- 13. Derive the expression for Langmuir adsorption isotherm.
- 14. Explain the temperature jump method for studying the kinetics of fast reactions.
- 15. The molecular diameters of O_2 and H_2 are 3.39×10^{-8} and 2.47×10^{-8} cm respectively. When one gram of O_2 and 0.1 g of H_2 are mixed in a one litre flask at 27°C, what will be the number of collisions per cubic cm per second? ($V = 10^3 \text{cm}^3$)
- 16. Differentiate van't Hoff and Arrhenius intermediates formed in the homogenous catalytic reaction.
- 17. Explain the importance of Skrabal plots in acid-base catalysis.
- 18. For a weak base, 2-nitroaniline, B in 0.02 M HClO₄ the ratio of [BH⁺] to [B] is found to be 0.01. Calculate pK_{BH+} for 2-nitroanilinium ion.
- 19. Discuss the kinetics of hydrogen-chlorine chain reaction.
- 20. Distinguish between physisorption and chemisorption with suitable examples.
- 21. Discuss the kinetics of quenching of fluorescence.
- 22. Derive the expressions for the concentrations of A, B and C for a first order parallel reaction, A giving two parallel products, B and C at time t.

Part-C

Answer any FOUR questions.

 $(4 \times 10 = 40)$

- 23 a. Explain time and true order of a reaction with relevant graphs.
 - b. Using appropriate diagrams discuss the role of potential energy surfaces in reaction kinetics.

(5+5)

- 24a. Derive Eyring equation for transition state theory of reaction rates.
 - b. Write the limitations of collision theory.

(6+4)

- 25a. Explain the double sphere model for the influence of dielectric constant on the rate of an ion-ion reactions in solution.
- b. The rate of a reaction between X^2 and Y^+ has been investigated in aqueous solution at 298 K and the second order rate constant at zero ionic strength is found to be $1.8 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$. What is the second order rate constant when the ionic strength of the medium is $2\times10^4\mathrm{M}$? (7+3)
- 26a. Explain the kinetics of single substrate enzymatic reaction.
- b. The protein catalase catalysing the decomposition of hydrogen peroxide has K_M and turnover number of 28×10^{-3} molL⁻¹ and 3.5×10^6 s⁻¹, respectively. Calculate the maximum rate of the reaction if the total enzyme concentration is 14×10^{-9} M. (7+3)
- 27a. Explain flash photolysis technique to study the kinetics of fast reactions.
 - b. Explain the kinetics of consecutive reactions with relevant graph. (5+5)
- 28 a. Discuss the kinetics of branched chain explosion reactions.
 - b. Explain any one mechanism for bimolecular surface reactions with an example.

(5+5)
