🐜 LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER - APRIL 2013

MT 1501 - GRAPHS, DIFF. EQU., MATRICES & FOURIER SERIES

Date: 11/05/2013

Dept. No.

Max.: 100 Marks

Time: 1:00 - 4:00

PART - A

Answer ALL the questions

(10 X 2 = 20 Marks)

- 1. Find the range and domain of $f(x) = \sqrt{x-5}$.
- 2. What is the axes and vertex of the parabola $y = x^2 2x + 3$.
- 3. Write the normal equations of y = ax + b.
- 4. Reduce $y = ax^n$ to linear law.
- 5. Define linear difference equation with an example.
- 6. Solve the difference equation $y_{x+3} 3y_{x+2} 10y_{x+1} + 24y_x = 0$.
- 7. Define symmetric and skew symmetric matrices.
- 8. Find the eigen values of the matrix $\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$.
- 9. Define periodic function with an example.
- 10. Show that $\int_{c}^{c+2\pi} \sin nx \, dx=0$, when $n \neq 0$.

PART - B

Answer any FIVE questions

(5 X 8 = 40 Marks)

- 11. The demand and supply conditions under perfect competition are $16-x^2$ and $2x^2+4$ respectively. Draw the graph of the function and find the equilibrium price.
- 12. The cost function to produce x kilograms of an item is given by $C(x) = 200x - 5x^2 + 0.05x^3$. Find the output at which the marginal cost is equal to the average cost.
- 13. By the method of least squares , fit a straight line to the following data

Х	1	2	3	4	5	
Y	14	27	40	55	68	

14. Solve $y_{n+2} - 4y_{n+1} + 3y_n = 3^n + 1$

15 Form the difference equation corresponding to the family of curves $y = ax^2 + bx - 3$

16 Determine the fourier expansion of f(x) = x, $-\pi < x < \pi$.

17 Calculate A^4 when $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$.

18 Verify Cayley Hamilton Theorem for $A = \begin{pmatrix} 3 & -1 \\ -1 & 5 \end{pmatrix}$.

PART - C

Answer any TWO questions

(2 X 20 = 40 Marks)

19. a) Given the cost function of an item as $C(x) = 300x - 10x^2 + \frac{x^3}{3}$. Find the output at which

(i) Marginal Cost is minimum (ii) Average cost is minimum.

b) Two quantities x and y are measured and corresponding values are given in the following data

Х	10	20	30	40	50	60
Y	4.5	7.1	10.5	15.5	20.5	27.1
Fit a cur	ve of the	form a -	+bx + cx	2 to the d	ata.	

20. a) Solve $y_{x+2} - 4y_x = 9x^2$.

b) Solve
$$y_{x+2} - 8y_{x+1} + 16y_x = 4^x$$
. (10+10)

21. A function f(x) is defined within the range (0, 2π) by

$$f(x) = \begin{cases} x & in (0,\pi) \\ 2\pi - xin(\pi, 2\pi) \end{cases}$$

Express f(x) as a fourier series in the range $(0,2\pi)$ and deduce that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.

22. Diagonalize the matrix $A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$.

\$\$\$\$\$\$