

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIRST SEMESTER - APRIL 2013

MT 1502 - ALGEBRA AND CALCULUS - I

Date: 09/05/2013 Dept. No. Max.: 100 Marks

Time: 1:00 - 4:00

PART A

 $(10 \times 2 = 20)$

ANSWER ALL QUESTIONS

- 1. Write the nth derivative of log(ax + b).
- 2. Show that, in the parabola $y^2 = 4ax$, the subtangent at any point is double the abscissa.
- 3. Write the condition for maxima and minima of a function of two variables.
- 4. Find the radius of curvature at $(1,\frac{1}{2})$ on the curve $2y = x(1-x+x^2)$.
- 5. Find the co-ordinates of the centre of curvature of the curve xy = 2 at the point (2, 1).
- 6. Form the quadratic equation having $\sqrt{5} 1$ as a root.
- 7. Solve $2x^3 15x^2 + 46x 42 = 0$, given that $3 i\sqrt{5}$ is a root.
- 8. State Newton's theorem on the sum of the powers of the roots.
- 9. State Descarte's rule of signs for negative roots.
- 10. Show that the equation $x^7 3x^4 + 2x^3 1 = 0$ has at least four imaginary roots.

PART B $(5 \times 8 = 40)$

ANSWER ANY FIVE QUESTIONS

- 11. If $y = \sin(m\sin^{-1}x)$, prove that $(1 x^2)y_2 xy_1 + m^2y = 0$ and $(1 x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$.
- 12. Find the angle at which the radius vector cuts the curve $\frac{l}{r} = 1 + e \cos\theta$.
- 13. Find the maximum and minimum values of the function $(x, y) = xy + \frac{1}{x} + \frac{1}{y}$.
- 14. Prove that the radius of curvature at any point of the cycloid $x = a(\theta + sin\theta)$, $y = a(1 cos\theta)$ is $4a \cos \frac{\theta}{2}$.

- 15. Find the asymptotes of $x^3 + 2x^2y xy^2 2y^3 + 4y^2 + 2xy + y 1 = 0$.
- 16. Show that the roots of the equation $x^3 + px^2 + qx + r = 0$ are in Arithmetic Progression if $2p^3 9pq + 27r = 0$.
- 17. Calculate the sum of the cubes of the roots of the equation $x^4 + 2x + 3 = 0$.
- 18. Solve $x^3 6x 9 = 0$ by Cardon's method.

PART C
$$(2 \times 20 = 40)$$

ANSWER ANY TWO QUESTIONS

19. (a). Solve
$$6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$$
. (10)

(b). Find the angle of intersection of the cardioids

$$r = a(1 + \cos\theta) \text{ and } r = b(1 - \cos\theta). \tag{10}$$

- 20. If $u = a^3 x^2 + b^3 y^2 + c^3 z^2$, where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$, find the minimum value of u.
- 21. Find the evolute of the cycloid $x = a(\theta \sin\theta)$; $y = a(1 \cos\theta)$.
- 22. Show that the equation $x^3 3x + 1 = 0$ has a root between 1 and 2 and calculate it to two places of decimals. (10)

\$\$\$\$\$\$\$