FIRST SEMESTER - APRIL 2013

MT 1502-ALGEBRA AND CALCULUS - I

Date: 09/05/2013
Dept. No. \square Max. : 100 Marks
Time: 1:00-4:00

PART A

$(10 \times 2=20)$

ANSWER ALL QUESTIONS

1. Write the $\mathrm{n}^{\text {th }}$ derivative of $\log (a x+b)$.
2. Show that, in the parabola $y^{2}=4 a x$, the subtangent at any point is double the abscissa.
3. Write the condition for maxima and minima of a function of two variables.
4. Find the radius of curvature at $\left(1, \frac{1}{2}\right)$ on the curve $2 y=x\left(1-x+x^{2}\right)$.
5. Find the co-ordinates of the centre of curvature of the curve $x y=2$ at the point $(2,1)$.
6. Form the quadratic equation having $\sqrt{5}-1$ as a root.
7. Solve $2 x^{3}-15 x^{2}+46 x-42=0$, given that $3-i \sqrt{5}$ is a root.
8. State Newton's theorem on the sum of the powers of the roots.
9. State Descarte's rule of signs for negative roots.
10. Show that the equation $x^{7}-3 x^{4}+2 x^{3}-1=0$ has at least four imaginary roots.

$$
\text { PART B } \quad(5 \times 8=40)
$$

ANSWER ANY FIVE QUESTIONS

11. If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0
$$

12. Find the angle at which the radius vector cuts the curve $\frac{l}{r}=1+e \cos \theta$.
13. Find the maximum and minimum values of the function $(x, y)=x y+\frac{1}{x}+\frac{1}{y}$.
14. Prove that the radius of curvature at any point of the cycloid $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$ is $4 a \cos \frac{\theta}{2}$.
15. Find the asymptotes of $x^{3}+2 x^{2} y-x y^{2}-2 y^{3}+4 y^{2}+2 x y+y-1=0$.
16. Show that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in Arithmetic Progression if $2 p^{3}-9 p q+27 r=0$.
17. Calculate the sum of the cubes of the roots of the equation $x^{4}+2 x+3=0$.
18. Solve $x^{3}-6 x-9=0$ by Cardon's method.

PART C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

19. (a). Solve $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=0$.
(b). Find the angle of intersection of the cardioids

$$
\begin{equation*}
r=a(1+\cos \theta) \text { and } r=b(1-\cos \theta) . \tag{10}
\end{equation*}
$$

20. If $u=a^{3} x^{2}+b^{3} y^{2}+c^{3} z^{2}$, where $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$, find the minimum value of u.
21. Find the evolute of the cycloid $x=a(\theta-\sin \theta) ; y=a(1-\cos \theta)$.
22. Show that the equation $x^{3}-3 x+1=0$ has a root between 1 and 2 and calculate it to two places of decimals.
