FIRST SEMESTER - APRIL 2013

MT 1503 - ANALYTICAL GEOMETRY OF 2D,TRIG. \& MATRICES

Date: 11/05/2013
Dept. No. \square Max. : 100 Marks
Time: 1:00-4:00

PART-A

Answer ALL the questions:

1. Write the coefficient of $\cos ^{n} \theta$ in the expansion of $\cos n \theta$.
2. Expand $\cos ^{5} \theta$ in terms of cosines of multiples of θ.
3. Prove that $\cosh ^{2} x+\sinh ^{2} x=\cosh 2 x$.
4. Find the value of $\log (1-i)$.
5. Find the eigen values of the matrix $\left[\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right]$.
6. State Cayley-Hamilton theorem.
7. Find the condition for the lines $l x+m y+n=0$ and $l_{1} x+m_{1} y+n_{1}=0$ to be conjugate.
8. Define conjugate diameter of the ellipse.
9. If e_{1} and e_{2} are the eccentricities of a hyperbola and its conjugate then prove that $e_{1}^{-2}+e_{2}^{-2}=1$.
10. Define Polar Co-ordinates.

PART -B

Answer any FIVE questions:

11. Prove that the equation $\frac{a h}{\cos \theta}-\frac{b k}{\sin \theta}=a^{2}-b^{2}$ has four roots.
12. Evaluate $\lim _{\theta \rightarrow 0} \frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}$.
13. If $\cosh u=\sec \theta$ then prove that $u=\log \tan \left(\frac{\pi}{4}+\frac{\theta}{2}\right)$.
14. Separate $\tan ^{-1}(x+i y)$ into real and imaginary parts.
15. Calculate A^{4} when $A=\left[\begin{array}{ll}-1 & 3 \\ -2 & 4\end{array}\right]$.
16. Find the locus of the midpoints of chords of the parabola which subtend a right angle at the vertex of the parabola.
17. Prove that the conjugate lines through a focus of an ellipse are at right angles.
18. The asymptotes of a hyperbola are parallel to $2 x+3 y=0$ and $3 x-2 y=0$. Its centre is at $(1,2)$ and it passes through the point $(5,3)$. Find its equation and its conjugate.

PART-C

Answer any TWO questions:

19. a) Prove that $\sin ^{3} \theta \cos ^{5} \theta=\frac{-1}{2^{7}}[\sin 8 \theta+2 \sin 6 \theta-2 \sin 4 \theta-6 \sin 2 \theta]$.
b) Express $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
20. a) If $\cos (x+i y)=\cos \theta+i \sin \theta$ then prove that $\cos 2 x+\cosh 2 y=2$.
b) Reduce $(\alpha+i \beta)^{x+i y}$ to the form $A+i B$.
21. Diagonalise the matrix $\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$.
22. a) Trace the curve $\frac{10}{r}=3 \cos \theta+4 \sin \theta+5$.
b) A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose centre C meets the circle $x^{2}+y^{2}=a^{2}+b^{2}$ at Q and Q^{\prime}. Prove that $C Q$ and $C Q^{\prime}$ are conjugate diameters of the ellipse.
