LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – APRIL 2016

MT 1500 – ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY

Date: 02-05-2016	Dept. No.	Max. : 100 Marks
Time: 01:00-04:00		

Answer ALL questions

- 1. Write down the n^{th} derivative of $y = \log(ax + b)$.
- 2. Find the polar subtangent and polar subnormal of the curve $r = a\theta$.
- 3. Write the formula for the radius of curvature when the pedal equation of the curve is given.

PART – A

- 4. Define evolute of a curve.
- 5. If α, β are the roots of the equation $ax^2 + bx + c = 0$, form the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$.
- 6. Form a rational cubic equation, given that $1, 3 \sqrt{-2}$ are the two given roots.
- 7. Prove that $\cosh 2x = \frac{1 + \tanh^2 x}{1 \tanh^2 x}$.
- 8. Evaluate $\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta}$.
- 9. Find the pole of 3x + 8y 24 = 0 with respect to $9x^2 + 16y^2 = 144$.
- 10. Find the equation of the chord of the parabola $y^2 = 4ax$ having (1,1) as its midpoint.

PA

Answer any FIVE questions

- 11. If $y = x^2 e^x$ prove that $y_n = \frac{1}{2}n(n-1)y_2 n(n-2)y_1 + \frac{1}{2}(n-1)(n-2)y$.
- 12. Using Lagrange's multipliers method find the maximum and minimum values

of $f(x, y) = x^2 - y^2$ subject to $x^2 + y^2 = 1$.

- 13. Find the radius of curvature at the point θ of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta \theta \cos \theta)$.
- 14. Solve the equation $x^3 19x^2 + 114x 216 = 0$, given that the roots are in GP.

15. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, prove that

$$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) = r - pq$$

- 16. Expand $\sin^3 \theta \cos^4 \theta$ in terms of multiples of θ .
- 17. Show that the eccentric angles at the extremities of a pair of semi conjugate diameters of an ellipse differ by a right angle.
- 18. Find the angle between the asymptotes of the hyperbola. Show that the product of the perpendiculars drawn from any point on a hyperbola to its asymptotes is constant.

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

PART-C

Answer Any TWO Questions

19. a) If $y = (x + \sqrt{1 + x^2})^m$ then prove that $(1 + x^2) y_{n+2} + (2n+1)x y_{n+1} + (n^2 - m^2) y_n = 0$. b) Find the angle of intersection of the curves $r = \frac{a}{10 + 1}$ and $r = \frac{b}{10 + 1}$ (10 + 1)

$$r = \frac{a}{1 + \cos\theta}$$
 and $r = \frac{b}{1 - \cos\theta}$. (10+10)

- 20. a) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. b) Solve the reciprocal equation $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$. (10+10)
- 21. a) Calculate to two places of decimals, the positive root of the equation $x^3 + 24x 50 = 0$ by Horner's method.
 - b) Separate into real and imaginary parts of $tan^{-1}(x+iy)$.
- 22. a) Find the sum of the series $\sum_{n=1}^{\infty} \frac{\sin n\theta}{2^n}$.
 - b) A Rectangular hyperbola whose centre is C is cut by any circle of radius r in the four points P,Q,R,S. Prove that $CP^2 + CQ^2 + CR^2 + CS^2 = 4r^2$. (10+10)

\$\$\$\$\$\$\$

$(2 \times 20 = 40)$

(12 + 8)