LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2016

MT 1500 - ALGEBRA, ANALY. GEO., CALCULUS \& TRIGONOMETRY

Date: 02-05-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

> PART - A
$(10 \times 2=20)$

Answer ALL questions

1. Write down the $n^{\text {th }}$ derivative of $y=\log (a x+b)$.
2. Find the polar subtangent and polar subnormal of the curve $r=a \theta$.
3. Write the formula for the radius of curvature when the pedal equation of the curve is given.
4. Define evolute of a curve.
5. If α, β are the roots of the equation $a x^{2}+b x+c=0$, form the equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$.
6. Form a rational cubic equation, given that $1,3-\sqrt{-2}$ are the two given roots.
7. Prove that $\cosh 2 x=\frac{1+\tanh ^{2} x}{1-\tanh ^{2} x}$.
8. Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\theta}$.
9. Find the pole of $3 x+8 y-24=0$ with respect to $9 x^{2}+16 y^{2}=144$.
10. Find the equation of the chord of the parabola $y^{2}=4 a x$ having $(1,1)$ as its midpoint.
PART - B

Answer any FIVE questions

11. If $y=x^{2} e^{x}$ prove that $y_{n}=\frac{1}{2} n(n-1) y_{2}-n(n-2) y_{1}+\frac{1}{2}(n-1)(n-2) y$.
12. Using Lagrange's multipliers method find the maximum and minimum values of $f(x, y)=x^{2}-y^{2}$ subject to $x^{2}+y^{2}=1$.
13. Find the radius of curvature at the point θ of the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$.
14. Solve the equation $x^{3}-19 x^{2}+114 x-216=0$, given that the roots are in GP.
15. If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, prove that $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)=r-p q$.
16. Expand $\sin ^{3} \theta \cos ^{4} \theta$ in terms of multiples of θ.
17. Show that the eccentric angles at the extremities of a pair of semi conjugate diameters of an ellipse differ by a right angle.
18. Find the angle between the asymptotes of the hyperbola. Show that the product of the perpendiculars drawn from any point on a hyperbola to its asymptotes is constant.

Answer Any TWO Questions

19. a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ then prove that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
b) Find the angle of intersection of the curves

$$
\begin{equation*}
r=\frac{a}{1+\cos \theta} \text { and } r=\frac{b}{1-\cos \theta} . \tag{10+10}
\end{equation*}
$$

20. a) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
b) Solve the reciprocal equation $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
21. a) Calculate to two places of decimals, the positive root of the equation $x^{3}+24 x-50=0$ by Horner's method.
b) Separate into real and imaginary parts of $\tan ^{-1}(x+i y)$.
22. a) Find the sum of the series $\sum_{n=1}^{\infty} \frac{\sin n \theta}{2^{n}}$.
b) A Rectangular hyperbola whose centre is C is cut by any circle of radius r in the four points P, Q, R, S. Prove that $C P^{2}+C Q^{2}+C R^{2}+C S^{2}=4 r^{2}$.
