

3.	(a) Let $\zeta = \{\varphi_0, \varphi_1, \varphi_2,\}$, where $\varphi_0(x) = \frac{1}{2\pi}, \varphi_{2n-1}(x) = \frac{\cos nx}{\sqrt{\pi}}$ and	
	$\varphi_{2n}(x) = \frac{\sin nx}{\sqrt{\pi}}$, for n = 1, 2 Prove that S is orthnormal on any interval of length 2 π	
	(OR)	
	(b) State and prove the Bessel's Inequality and Parseval's formula.	(5 marks)
	(c) State and prove the Riemann-Lebesgue lemma and use the lemma to prove the following	<u>;</u> :
	For $f = L(-\infty, +\infty)$, $\lim_{\infty} \int_{-\infty}^{\infty} f(t) \frac{1-\cos(t)}{t} dt = \int_{0}^{\infty} \frac{f(t)-f(-t)}{t} dt$.	(15 marks)
	(OR)	
	(d) (i) Define Dirichlet's kernel and prove that $\frac{1}{2} + \sum_{k=1}^{n} coskx = \frac{\sin(2n+1)\frac{x}{2}}{2sin\frac{x}{2}}, x \neq 2m\pi$	
	(ii) If $f \in L[0,2\pi]$, f is periodic with period 2π and $\{s_n\}$ is a sequence of partial sums of	Fourier series
	generated by f, $s_n = \frac{a_0}{2} + \sum_{k=1}^n (a_k coskx + b_k sinkx), n = 1,2$ then	
	prove that $s_n(x) = \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t) + f(x-t)}{2} D_n(t) dt.$	(5+10 marks)
	4. (a) If A, $B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then prove that, $A + B \parallel \leq A \parallel + B \parallel$ and $cA \parallel = c \parallel A \parallel$	
	(OR)	
	(b) State and prove the fixed point theorem for a complete metric space.	(5 marks)
	(c) State and prove the inverse function theorem.	
	(OR)	
	(d) State and prove the implicit function theorem.	(15 marks)
	5. (a) Define heat flow and the heat equation.	
	(OR)	
	(b) Explain rectilinear coordinate system with algebraic and geometric approach.	
		(5 marks)
	(c) Derive the expression for Newton's Law of Cooling.	
	(OR)	
	(d) Derive the D' Alembert's wave equation for a vibrating string.	(15 marks)
