LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS					
					FIRST SEMESTER – APRIL 2
MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS					
Date: 02-05-2016 Dept. No.	Max. : 100 Marks				
Answer all questions. Each question carries 20 marks.					
1. (a) State and prove Abel's formula.	(5)				
(OR)					
(b) If Wronskian of two functions $x_1(t)$ and $x_2(t)$ on I is non-zero for at least one point on the interval I,					
prove that $x_1(t)$ and $x_2(t)$ are linearly independent on <i>l</i> .	(5)				
(c) Use the method of variation of parameters to solve $x'''(t) - x'(t)$) = t. (15)				
(OR)					
(d) Check whether the given sets of functions are linearly independent.					
(i) e^x, e^{-x} (ii) $1 + x, x^2 + x, 2x^2 - x - 3$					
(iii) $\sin x, \sin 2x, \sin 3x$ on $I = [0, 2\pi]$ (iv) 1, $x, x^2,, x^n$. (15)				
2. (a) Find the explicit expression for first two orders of Legendre's poly	ynomial. (5)				
(OR)					
(b) State and prove Rodrigure's formula.	(5)				
(c) Solve by Frobenius method, $x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} - y = 0.$	(15)				
(OR)					
(d) Derive the generating function for Legendre's polynomial.	(15)				
3. (a) Prove that $J'_n(x) = \frac{n}{x} J_n(x) - J_{n+1}(x)$.	(5)				
(OR)					
(b) Show that $\exp(\frac{1}{2}x(t-\frac{1}{t}) = \sum_{n=-\infty}^{\infty} t^n J_n(x).$	(5)				
(c) Show that the two independent solution of the Bessel's equation may be taken to be $J_n(x)$ and $Y_n(x) =$					
$\frac{\cos n\pi J_n(x) - J_{-n}(x)}{\sin n\pi}$ for all values of <i>n</i> .	(15)				
(OR)					
(d) Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0, n \ge 0.$	(15)				

4.	(a) Prove that all the eigen values of Strum-Liouville problem are real.	(5)		
	(0R)			
	(b) Define Lipschitz condition and check whether the following function sati	sfies the same: $f(t,$	$x) = x^{1/2}$	
	defined in the region $R = \{(t, x) : t \le 2, x \le 2\}.$	(5)		
	(c) State and prove Picard's theorem for initial value problem.	(15)		
	(OR)			
	(d) Show that $x(t)$ is a solution of the equation $L[x(t)] + f(t) = 0$, $a \le t \le b$ if and only if $x(t) =$			
	$\int_{a}^{b} G(t,s)f(s)ds.$	(15)		
5.	(a) Explain stable solution with an example.	(5)		
	(OR)			
	(b) State the stability behaviours of the autonomous system.	(5)		
	(c) State and prove the two fundamental theorems on the stability of non-autonomous system. (15)			
	(OR)			
	(d) Explain the stability of the system $x' = A x$ by Lyapunov's method.	(15)		
