B.Sc. DEGREE EXAMINATION - COMPUTER SCIENCE

SECOND SEMESTER - APRIL 2016
MT 2100 / CS 2100 - MATHEMATICS FOR COMPUTER SCIENCE

Date: 26-04-2016 \square Max. : 100 Marks
Time: 01:00-04:00

Part A

Answer ALL questions:

1. Define skew symmetric matrix.
2. Write down the expansion of $\cos 5 \theta$ in terms of $\cos \theta$.
3. Solve the equation $32 x^{3}+48 x^{2}+22 x-3=0$ whose roots are in AP .
4. Verify Euler's theorem for the function $\mathrm{u}=x^{2}+y^{2}+2 x y$.
5. Evaluate : $\int x \mathrm{e}^{2 x} \mathrm{dx}$.
6. Evaluate: $\int_{0}^{\pi / 2} \sin ^{7} x \cos ^{5} x d x$.
7. Solve the differential equation $\left(D^{2}+2 D+5\right) y=15$.
8. Solve $p^{2}+q^{2}=n p q$.
9. Write the formula for Simpson's $1 / 3$ rule.
10. Write the Newton Raphson formula.

Part B

Answer any FIVE questions:
11. Test the consistency and hence solve $x+y+z=6 ; x+2 y-2 z=-3 ; 2 x+3 y+z=11$.
12. Express $\cos 7 \theta$ interms of $\cos \theta$.
13. Increase the roots of the equation $3 x^{4}+7 x^{3}-15 x^{2}+x-2=0$ by 7 and find the transformed equation.
14. What is the radius of curvature of the curve $\sqrt{x}+\sqrt{y}=1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$.
15. Solve $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
16. Evaluate $\int \sin ^{7} x d x$ by using reduction formula.
17. Solve the equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2}+3$.
18. Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by using Trapezoidal rule with $h=\frac{1}{6}$.

Part C

Answer any TWO questions:
$(2 \times 20=40)$
19. (a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{rrr}8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$.
(b) Prove that $\cos ^{5} x=\frac{1}{10}(\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta)$.
20. (a) Show that $\int \frac{2 x+1}{x^{2}+3 x+1} d x$.
(b) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x$ and find the value when $n=7$.
21. (a) Solve the equation $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=x^{2}+7 x+9$.
(b) Solve $z=p x+q y+p q$.
22. (a) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}} d x$ by using Simpson's $1 / 3^{\text {rd }}$ and $3 / 8^{\text {th }}$ rule with $h=\frac{1}{6}$.
(b) Solve $x^{3}-2 x-5=0$ upto 3 decimals by using Regula-flasi method.

