

Answer any TWO questions
19. a) Prove that
$$\int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) = \frac{\pi}{8} \log 2.$$
b) Find the reduction formula for $I_n = \int \sin^n x \, dx$ and hence find
$$\int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx$$
 and
$$\int_{0}^{\frac{\pi}{2}} \sin^5 x \, dx.$$
(10 +10)
20. a) Change the order of integration in the integral
$$\int_{0}^{a} \sum_{x'/a}^{2a-x} xy \, dy \, dx$$
 and evaluate it.
b) Evaluate
$$\iint r \sqrt{a^2 - r^2} \, dr \, d\theta$$
 over the upper half of the circle $r = a \cos \theta$. (12 + 8)
21. a) Prove that $\beta(m, n) = \frac{|\overline{m}|\overline{n}|}{|\overline{m+n}|}$.
b) Test the convergence of $\sum \frac{1.3.5...(2n-1)}{2.4.6...2n} \cdot \frac{1}{n}$. (12 + 8)
22. a) Find the sum to infinity of the series $\frac{2.4}{3.6} + \frac{2.4.6}{3.6.9} + \frac{2.4.6.8}{3.6.9.12} + ...\infty$
b) Find the sum to infinity of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \cdot \frac{1}{2^n}$. (10 +10)

\$\$\$\$\$\$\$