LOYOLA	COLLEGE (AUTONOMOUS	5), CHENNAI – 600 034
KIC STA M	I.Sc. DEGREE EXAMINATION -	- MATHEMATICS
T T	SECOND SEMESTER - APR	RIL 2016
MT 2810 - ALGEBRA		
Date: 20-04-2016 Time: 01:00-04:00	Dept. No.	Max. : 100 Marks
ANSWER ALL QUESTION	IS.	
I a) Show that any group of	of order 45 has a subgroup of order 9. [OR]	
b) Let G be a group and	$a \in G$. Prove that $N(a)$ is a subgroup	o of G. (5)
c i) State and prove Cauch	ny's theorem.	
ii) If $o(G) = p^n$ where p	is a prime number then prove that $Z($	$(G) \neq (e). \tag{8+7}$
(2) L([OR]	
d i) State and prove Sylov ii) Show that $Z_{12} \approx Z_2$ ((10+5)	
1) 5110 H UNIX 512 53 C	. ~4	
II a) Show that $x^6 + 9x^5 - 1$	$2x^4 + 24x^3 - 15x + 12$ is irreducible ov [OR]	ver rational numbers.
b) If $f(x)$ and $g(x)$ are	two polynomials in $F[x]$ then prove	that $degf(x)g(x) =$
degf(x) + degg(x).		(5)
c i) State and prove the Ei	isentein criterion.	
ii) State and prove division algorithm (10+5		(10+5)
d i) State and prove Gaus	s lemma.	
ii) Prove that the polyno	mial $x^2 + 1$ is irreducible over the field	ld F of integers mod
11 and show that $F[x]$	$/x^2 + 1$ is a a field having 121 element	nts. (7+8)
III a) Find the degree of $\sqrt{2}$	- ⁷ over O	
If a) Find the degree of $\sqrt{2}$	+ \(\sigma\) 5 0\(\ellinerrow 0 \). [OR]	
b) State and prove remain	ider theorem.	(5)
c) If L is a finite extensio of F and $[L: F] = [L: I]$	n of K and K is a finite extension of I K][K:F] . [OR]	F then prove that L is a finite extension
d) Let $f(x) \in F[x]$ be of in which $f(x)$ has n ro	degree $n \ge 1$. Prove that there exist a ots.	n extension E of F of degree at most n! (15)

IV a) Let F be the field of rational numbers and let $f(x) = x^4 + x^2 + 1$ F[x]. Find the splitting field of f(x).

[OR]

- b) Define a normal extension and give an example.
- c) Let F be a field and let F(x₁,x_n) be the field of rational functions in x₁,x_n over F. Suppose S is the Field of symmetric rational functions. Then prove that
 - (i) $[F(x_1, ..., x_n):S] = n!$
 - (ii) $G([F(x_1, ..., x_n):S]) = S_n$
 - (iii) If a_1, \dots, a_n are elementary symmetric functions in x_1, \dots, x_n then $S = F(a_1, \dots, a_n)$.
 - (iv) $F(x_1, \dots, x_n)$ is the splitting field over $F(a_1, \dots, a_n) = S$ of the polynomial $t^n a_1 t^{n-1} + a_2 t^{n-2} \dots + (-1)^n a_n$

[OR]

- d) State and prove Fundamental theorem of Galois theory .
- V a) Let *F* be a finite field with *q* elements and $F \subset K$ where *K* is also a finite field. Prove that K has q^n elements where n = [K; F].

[OR]

- b) Derive the cyclotomic polynomials $_{3}(x)$ and $_{4}(x)$.
- c) Let G be a finite abelian group satisfying the relation $x^n = e$ is satisfied by at most n elements of G, for every integer n. Then prove that G is a cyclic group.

[OR]

d) State and prove Wedderburn's theorem on division rings.

(15)

(5)

(5)

(15)