M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2016
MT 2811 - MEASURE THEORY AND INTEGRATION

Date: 22-04-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00
Answer ALL questions:

1. (a) For any sequence of sets $\left\{E_{i}\right\}$, prove that $m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} m^{*}\left(E_{i}\right)$.
(OR)
(b) Prove that the class M of Lebesgue measurable sets is a σ-algebra.
(c) (i) Prove that every interval is measurable.
(ii) Prove that there exists a non-measurable set.
(OR)
(d) Prove that the following statements regarding the set E are equivalen:
(i) E is measurable.
(ii) $\forall \epsilon>0$, there exists an open set $O \supseteq E$ such that $m^{*}(O-E) \leq \epsilon$.
(iii) $\exists G$, a G_{δ}-set, $\mathrm{G} \supseteq E$ such that $m^{*}(G-E)=0$.
(iv) $\forall \in>0, \exists F$, a closed set, $F \subseteq E$ such that $m^{*}(E-F) \leq \epsilon$.
(v) $\exists F$, a $F_{\sigma}-$ set, $\mathrm{F} \subseteq E$ such that $m^{*}(E-F)=0$.
2. (a) Show that $\int_{0}^{1} \frac{x^{4 / 3}}{1-x} \log \frac{1}{x} d x=9 \sum_{n=1}^{\infty} \frac{1}{(3 n+1)^{2}}$.
(OR)
(b) Let A and B be any twe disjoint measurable sets. If φ is a simple function then prove that
(i) $\int_{A \cup B} \emptyset d x=\int_{A} \emptyset d x+\int_{B} \varnothing d x$
(ii) $\int a \emptyset d x=a \int \emptyset d x$, if $\mathrm{a}>0$.
(c) State and prove Lebesgue's Monotone Convergence Theorem.
(OR)
(d) (i) Prove that the following statements are equivalent:
1) f is a measurable function,
2) $\forall \alpha,\lfloor x: f(x) \geq \alpha]$ is measurable,
3) $\forall \alpha,[x: f(x)<\alpha]$ is measurable,
4) $\forall \alpha,[x: f(x) \leq \alpha]$ is measurable.
(ii) If f is Riemann integrable and bounded over the finite interval $[a, b]$, then prove that f is integrable $R \int_{a}^{b} f d x=\int_{a}^{b} f d x$.
3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring.
(OR)
(b) If c is a real number and f, g are measurable functions, then prove that $f+g$ and $f g$ are also measurable.
(c) Let μ^{*} be an outer measure on $\mathcal{H}(\Re)$ and let S^{*} denote the class of μ^{*}-measurable sets. Then prove that S^{*} is a σ - ring and μ^{*} restricted to S^{*} is a Complete Measure.
(OR)
(d) Prove that the outer measure μ^{*} on $\mathcal{H}(\Re)$ defined by $\mu^{*}(E)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(E_{n}\right): E_{n} \in \boldsymbol{R}\right.$, $\left.n=1,2, \ldots, E \subseteq \bigcup_{n=1}^{\infty} E_{n}\right\}$ and the corresponding outer measure defined by $\bar{\mu}$ on $S(\Re)$ and $\bar{\mu}$ on S^{*} are the same.
4. (a) Let ψ be strictly convex, then prove that $\psi\left(\int \mathrm{fd} \mu\right)=\int \psi \cdot \mathrm{f} d \mu$ if and only if $f=\int \mathrm{f} \mathrm{d} \mu$ a.e.
(OR)
(b) Define a convex function and prove that for a convex function ψ on (a, b) such that $\mathrm{a}<\mathrm{s}<\mathrm{t}<\mathrm{u}<\mathrm{b}$, then $\psi(\mathrm{s}, \mathrm{t}) \leq \psi(\mathrm{s}, \mathrm{u})$.
(c) (i) Let ψ be a function on (a, b). Then prove that ψ is convex on (a, b) if and only if for each x and y such that $a<x<y<b$, the graph of ψ on (a, x) and (y, b) does not lie below the line passing through $(x, \psi(x))$ and $(y, \psi(y))$.
(ii) Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions and let f be a measurable function such that $f_{n} \rightarrow f$ in measure, then prove that $\int f d \mu \leq \operatorname{limin} f \int f_{n} d \mu$.
(d) (i) State and prove Holder's Inequality.
(ii) State and prove Jensen's Inequality.
(8+7)
5. (a) Let v be a signed measure and let μ, λ be measure on $[\mathrm{X}, \boldsymbol{S}]$ such that μ, λ, v are σ - finite, $v<\mu \mu, \mu \ll \lambda$ then prove that $\frac{d v}{d \lambda}=\frac{d v}{d \mu} \frac{d \mu}{d \lambda}[\lambda]$.
(OR)
(b) Prove that the countable union of sets with respect to a signed measure v is a positive set.
(c) (i) Let v be a signed measure on $\llbracket X, S \rrbracket$. Then prove that there exists a positive set A and a negative set B such that $A \cup B=X, A \cap B=\Phi$. Prove further that it is unique to the extent that if A_{1}, B_{1} and A_{2}, B_{2} are Hahn decomposition of X with respect to v, then $A_{1} \Delta A_{2}$ is a v-null set.
(ii) Define Signed measure and total variation of a signed measure.
(d) State and prove Radon-Nikodym Theorem.
