LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS

SECOND SEMESTER - APRIL 2016

MT 2811 - MEASURE THEORY AND INTEGRATION

Date: 22-04-2016 Dept. No.	Max. : 100 Marks
Answer ALL questions:	
1. (a) For any sequence of sets $\{E_i\}$, prove that $m^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} m^*(E_i)$. (OR)	
(b) Prove that the class M of Lebesgue measurable sets is a σ -algel	bra. (5)
(c) (i) Prove that every interval is measurable.	
(ii) Prove that there exists a non-measurable set.	(5+10)
(OR)	
(d) Prove that the following statements regarding the set E are equivalent:	
(i) E is measurable.	
(ii) $\epsilon > 0$, there exists an open set $O \supseteq E$ such that $m^*(O - E) \le \epsilon$.	
(iii) 1G, a G_{δ} -set, G $\supseteq E$ such that $m^*(G - E) = 0$.	
(iv) $\ell \in 0$, $\exists F$, a closed set, $F \subseteq E$ such that $m^*(E - F) \leq \epsilon$.	
(v) F, a F_{σ} -set, $F \subseteq E$ such that $m^*(E - F) = 0$.	(15)
2. (a) Show that $\int_0^1 \frac{x^{\frac{1}{3}}}{1-x} \log \frac{1}{x} dx = 9 \sum_{n=1}^\infty \frac{1}{(3n+1)^2}$.	
(OR)	
(b) Let A and B be any two disjoint measurable sets. If φ is a simple function then prove that	
(i) $\int_{A \cap B} \phi dx = \int_{A} \phi dx + \int_{B} \phi dx$	
(ii) $\int a\phi dx = a \int \phi dx$, if $a > 0$.	(5)
(c) State and prove Lebesgue's Monotone Convergence Theorem.	(15)
(OR)	
(d) (i) Prove that the following statements are equivalent:	
1) f is a measurable function,	
2) $\forall \alpha, [x: f(x) \ge \alpha]$ is measurable,	
3) α , $[x: f(x) < \alpha]$ is measurable,	
4) α , $[x: f(x) \le \alpha]$ is measurable.	
(ii) If f is Riemann integrable and bounded over the finite interval $[a, b]$, then prove that f is	
integrable $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$.	(8+7)
3 (a) Show that every algebra is a ring and every σ algebra is a σ ring	na
(OR)	
(b) If c is a real number and f, g are measurable functions, then prove that $f + g$ and fg are also measurable.	
(c) Let μ^* be an outer measure on $\mathcal{H}(-)$ and let S^* denote the class of μ^* -measurable sets. Then	
prove that S [*] is a σ –ring and μ^* restricted to S [*] is a Complete Measure.	
(OR)	

(d) Prove that the outer measure μ^* on $\mathcal{H}(\)$ defined by $\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(E_n) : E_n \in \mathcal{R}, \\ \mu^*(E) : E_n$

 $n = 1, 2, ..., E \subseteq \bigcup_{n=1}^{\infty} E_n$ and the corresponding outer measure defined by $\overline{\mu}$ on $S(\Re)$ and $\overline{\mu}$ on S^* are the same

S* are the same.

- 4. (a) Let be strictly convex, then prove that $(fd\mu) = \cdot f d\mu$ if and only if $f = f d\mu$ a.e. (OR)
 - (b) Define a convex function and prove that for a convex function ψ on (a, b) such that a<s<t<u
b, then ψ (s, t) $\leq \psi$ (s, u).
 - (c) (i) Let ψ be a function on (a, b). Then prove that ψ is convex on (a, b) if and only if for each x and y such that a < x < y < b, the graph of ψ on (a, x) and (y, b) does not lie below the line passing through (x, ψ(x)) and (y, ψ(y)).</p>
 - (ii) Let $\{f_n\}$ be a sequence of *non-negative* measurable functions and let f be a measurable function such that $f_n \rightarrow f$ in measure, then prove that $fd\mu \leq \liminf \int f_n d\mu$. (7+8) (OR)
 - (d) (i) State and prove Holder's Inequality.(ii) State and prove Jensen's Inequality.
- 5. (a) Let v be a signed measure and let μ, λ be measure on [X, **S**] such that μ, λ, v are

 σ - finite, $v \ll \mu$, $\mu \ll \lambda$ then prove that $\frac{dv}{d\lambda} = \frac{dv}{d\mu} \frac{d\mu}{d\lambda} [\lambda]$.

(b) Prove that the countable union of sets with respect to a signed measure v is a positive set. (5)

(c) (i) Let v be a signed measure on [X, S]. Then prove that there exists a positive set A and a negative set B such that $A \cup B = X$, $A \cap B = \Phi$. Prove further that it is unique to the extent that if A_1, B_1 and A_2, B_2 are Hahn decomposition of X with respect to v, then $A_1 \Delta A_2$ is a

v-null set.

(ii) Define Signed measure and total variation of a signed measure. (11+4)

(OR)

(15)

(15)

(5)

(8+7)

(d) State and prove Radon-Nikodym Theorem.
