LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2016
MT 2812 - PARTIAL DIFFERENTIAL EQUATIONS
$\left(14^{\text {th }} \& 15^{\text {th }}\right.$ BATCHES)
Date: 16-04-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

Answer all questions. Each question carries 20 marks.

1. (a) Show that the equations $p^{2}+q^{2}=1,\left(p^{2}+q^{2}\right) x=p z$ are compatible and solve them.

OR
(b) Using Charpit's method, solve $\left(p^{2}+q^{2}\right)^{n}(q x-p y)=1$.
(c) Find the complete integral for the following equations using Jacobi's method:
(i) $p^{2} x+q^{2} y=z$
(ii) $x p q+y q^{2}=1$
(iii) $p=(z+q y)^{2}$.

OR
(d) Find the characteristic of the partial differential equation $z=p^{2}-q^{2}$ and find the integral surface which passes through the parabola $4 z+x^{2}=0, y=0$.
2. (a) Define self adjoint operator. Prove that (i) $L(u)=u_{x x}+u_{y y}$ (ii) $L(u)=c^{2} u_{x x}-u_{t t}$ are self adjoint.

OR
(b) Solve $\left(2 D^{2}-5 D D^{\prime}+2 D^{\prime}\right) z=24(y-x)$.
(c) Explain Riemann's method to solve linear hyperbolic partial differential equations.

OR
(d) Reduce the equations $u_{x x}+y^{2} u_{y y}=y$ to canonical form and solve.
3. (a) Derive Laplace equation.

OR

(b) Find the temperature in a sphere of radius a when its surface is maintained at zero temperature and its initial temperature is $f(r, \theta)$.
(c) Obtain the solution of heat conduction equation in spherical polar coordinates.

OR
(d) Solve the Cauchy problems, described by the inhomogenous wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-\boldsymbol{c}^{2} \frac{\partial^{2} u}{\partial y^{2}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{t}) \text { subject to initial conditions } \boldsymbol{u}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{\eta}(\boldsymbol{x}), \frac{\partial u}{\partial t}(\boldsymbol{x}, \mathbf{0})=\boldsymbol{v}(\boldsymbol{x}) . \tag{15}
\end{equation*}
$$

4. (a) Solve the heat conduction equation $k \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}-\infty<x<\infty, t>0$ subject to the initial and boundary conditions $u(x, t)$ and $\frac{\partial u}{\partial x}(x, t) \rightarrow 0$ as $|x| \rightarrow \infty, u(x, 0)=f(x),-\infty \ll x<\infty$.

OR

(b) Determine the Green's function for the Dirichlet problem for a circle.
(c) Use Laplace transform method, to solve the initial value problem $\frac{\partial^{2} u}{\partial x^{2}}=k \frac{\partial u}{\partial t^{\prime}} 0<x<l, 0<t<\infty$ subject to the conditions $u(0, t)=0, u(l, t)=g(t), 0<t<\infty$ and $u(x, 0)=0,0<x<l$.

OR

(d) State and prove Helmholtz Theorem.
5. (a) Find the solution of the Volterra integral equation $y(x)=\sin x+2 \int_{0}^{x} \cos (x-t) y(t) d t$.

OR
(b) Determine the resolvent kernels for the Kernel $K(x, t)=e^{x+1} ; a=0, b=1$.
(c) Find the solution of Fredholm integral equation of second kind by the method of successive substitutions.

OR

(d) State and prove Hilbert- Schmidt theorem.

