LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION – MATHEMATICS SECOND SEMESTER – APRIL 2016		
MT 2814 - COMPLEX ANALYSIS		
Date: 25-04-2016 Dept. No.	Max. : 100 Marks	
Answer all the questions:		
 (a) Let G be a region. Show that any analytic function f:G → C such that f(z) ≤ f(a) ∀ z ∈ G is constant. OR	t (5)	
(b) Define (i) Zeros of an analytic function (ii) index of a closed curve (iii) FEP homotopic (iv) Simply		
connected.	(5)	
(c) (i) Let f be analytic in $B(a; R)$ then prove that $f(z) = \sum_{n=0}^{\infty} a_n$	$(z-a)^n$ for $ z-a < R$ where	
$a_n = \frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence R .	(- - -	
(ii) State and prove Morera's theorem.	(7+8)	
UR	(15)	
(d) State and prove nomotopic version of Cauchy's theorem.	(15)	
2. (a) Define convex function and prove that a function $f:[a,b] \rightarrow \mathbb{R}$ is convex if and only if		
$A = \{(x, y) : a \le x \le b \text{ and } f(x) \le y\} \text{ is convex.}$	(5)	
OR		
(b) If a set $\mathfrak{F} \subset C(G, \Omega)$ is normal then prove that the following conditions are satisfied:(i) for each z in		
$G, \{f(z) : f \in \mathfrak{F}\}\$ has compact closure in Ω (ii) \mathfrak{F} is equicontinuous at e	ach point of G.	
20 200 200 200 200 20 20 20 20 20 20	(5)	
 (c) Let a < b and let G be a vertical strip {x + iy: a < x < b}. Suppose f:G⁻ - C is continuous and f is analytic in G. If we define M: [a, b] → R by M(x) = sup{ f(x + iy) : -∞ < y < ∞}, and f(z) < B for all z in G, then prove that logM(x) is a convex function 		
OR	(15)	
(d) (i) State and prove Hadamard's three circles theorem.		
(ii) Let G be a region which is not the whole plane and such that every non-vanishing analytic		
function on G has an analytic square root. If $a \in G$ then prove that there is an analytic function f on		
G such that (a) $f(a) = 0$ and $f'(a) > 0$ (b) f is one-one and (c) $f(G) = D = \{z : z < 1\}$.		
	(7+8)	

3. (a) State and prove Gauss's formula.	(5)
OR	
(b) Show that $\gamma = \lim_{n \to \infty} \left[\left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) - \log n \right]$ in the usual notation. (c) (i) Define elementary factor and prove that $\left 1 - E_p(z) \right \le z ^{p+1}$ for $ z \le 1$ and $p = 0$.	(5)
(ii) State and prove Bohr-Mollerup theorem.	(7+8)
OR	
(d) (i) For $Re \ z > 1$ then prove that $\zeta(z)\Gamma(z) = \int_0^\infty (e^t - 1)^{-1} t^{z-1} dt$.	
(ii) If $\operatorname{Re} z > 0$ then prove that $\Gamma(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt$	(7+8)
4. (a) Define rank, genus and order of an entire function.	(5)
OR	
(b) State and prove Poisson-Jensen Formula.	(5)
(c) State and prove Mittag- Leffler's theorem.	(15)
OR	
(d) State and prove Hadamard Factorization theorem.	(15)

5. (a) Define elliptic function and prove that a non constant elliptic function has equally many poles as it has zeros.
 (5)

OR

(b) Prove that
$$_{\sigma^{\omega'}}(z) = \frac{-\sigma(2z)}{(\sigma(z))^4}$$

(c) (i) Prove that the zeros $a_1, a_2, ..., a_n$ and poles $b_1, b_2, ..., b_n$ of an elliptic function satisfy $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n \pmod{M}$.

(5)

(ii) Prove that
$$(z+u) = -(z) - {}_{\sigma^{-}}(u) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(u)}{\wp(z) - \wp(u)}\right)^2$$
. (8+7)

- (d) (i) Show that $\zeta(z) = \frac{1}{z} + _{w\neq 0} \left(\frac{1}{(z-w)} + \frac{z}{w^2} + \frac{1}{w} \right)$ and it is an odd function. Also show that $\zeta'(z) = -$ (z).
- (ii) Prove that a discrete module consists of either of zero alone, of the integral multiples nw of a single complex number w ≠ 0 or of linear combinations n₁w₁ + n₂w₂ with integral coefficients of two numbers w₁, w₂ with non real ratio ^{w₂}/_{w₁}. (8+7)
