MT 2814-COMPLEX ANALYSIS

Date: 25-04-2016
Time: 01:00-04:00

Answer all the questions:

1. (a) Let G be a region. Show that any analytic function $f: G \rightarrow \mathbb{C}$ such that $|f(z)| \leq|f(a)| \forall z \in G$ is constant.

OR

(b) Define (i) Zeros of an analytic function (ii) index of a closed curve (iii) FEP homotopic (iv) Simply connected.
(c) (i) Let f be analytic in $B(a ; R)$ then prove that $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=\frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence $\geq R$.
(ii) State and prove Morera's theorem.

OR

(d) State and prove homotopic version of Cauchy's theorem.
2. (a) Define convex function and prove that a function $f:[a, b] \rightarrow \mathbb{R}$ is convex if and only if $A=\{(x, y): a \leq x \leq b$ and $f(x) \leq y\}$ is convex.

OR

(b) If a set $\mathfrak{F} \subset C(G, \Omega)$ is normal then prove that the following conditions are satisfied:(i) for each z in $G,\{f(z): f \in \mathfrak{F}\}$ has compact closure in Ω (ii) \mathscr{F} is equicontinuous at each point of G.
(c) Let $a<b$ and let G be a vertical strip $\{x+i y: a<x<b\}$. Suppose $f: G^{-} \rightarrow \mathbb{C}$ is continuous and f is analytic in G. If we define $M:[a, b] \rightarrow \mathbb{R}$ by
$M(x)=\sup \{|f(x+i y)|:-\infty<y<\infty\}$, and $|f(z)|<B$ for all z in G, then prove that $\log M(x)$ is a convex function.

OR

(d) (i) State and prove Hadamard's three circles theorem.
(ii) Let G be a region which is not the whole plane and such that every non-vanishing analytic function on G has an analytic square root. If $a \in G$ then prove that there is an analytic function f on G such that (a) $f(a)=0$ and $f^{\prime}(a)>0$ (b) f is one-one and \quad (c) $f(G)=D=\{z:|z|<1\}$.
3. (a) State and prove Gauss's formula.

OR

(b) Show that $\gamma=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)-\log n\right]$ in the usual notation.
(c) (i) Define elementary factor and prove that $\left|1-E_{p}(z)\right| \leq\left.{ }^{\prime} z\right|^{p+1}$ for $|z| \leq 1$ and $p \geq 0$.
(ii) State and prove Bohr-Mollerup theorem.

OR

(d) (i) For $R e z>1$ then prove that $\zeta(z) \Gamma(z)=\int_{0}^{\infty}\left(e^{t}-1\right)^{-1} t^{z-1} d t$.
(ii) If $\operatorname{Re} z>0$ then prove that $\Pi(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$
4. (a) Define rank, genus and order of an entire function.

OR
(b) State and prove Poisson-Jensen Formula.
(c) State and prove Mittag- Leffler's theorem.

OR

(d) State and prove Hadamard Factorization theorem.
5. (a) Define elliptic function and prove that a non constant elliptic function has equally many poles as it has zeros.

OR

(b) Prove that $\wp^{\prime}(z)=\frac{-\sigma(2 z)}{(\sigma(z))^{4}}$
(c) (i) Prove that the zeros $a_{1}, a_{2}, \ldots, a_{n}$ and poles $b_{1}, b_{2}, \ldots, b_{n}$ of an elliptic function satisfy $a_{1}+a_{2}+$ $\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}(\bmod M)$.
(ii) Prove that $\wp(z+u)=-\wp(z)-\wp(u)+\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2}$.

OR
(d) (i) Show that $\zeta(z)=\frac{1}{z}+\sum_{w \neq 0}\left(\frac{1}{(z-w)}+\frac{z}{w^{2}}+\frac{1}{w}\right)$ and it is an odd function. Also show that $\zeta^{\prime}(z)=-\wp(z)$.
(ii) Prove that a discrete module consists of either of zero alone, of the integral multiples $n w$ of a single complex number $w \neq 0$ or of linear combinations $n_{1} w_{1}+n_{2} w_{2}$ with integral coefficients of two numbers w_{1}, w_{2} with non real ratio $\frac{w_{2}}{w_{1}}$.

