Date: 06-05-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART A

Answer ALL the questions

1. If $y=e^{a x}$, find y_{n}.
2. Find the polar subtangent and subnormal of the curve $r=e^{\theta c o t a}$.
3. Prove that $\frac{e-1}{e+1}=\frac{\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\cdots \infty}{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\cdots \infty}$.
4.Find the rank of the matrix $A=\left(\begin{array}{rrr}3 & -1 & 2 \\ -6 & 2 & -4 \\ -3 & 1 & -2\end{array}\right)$.
4. Find the Laplace transform of $3 t-2 e^{-t}$.
5. Find $L^{-1}\left(\frac{1}{(s+1)^{2}+1}\right)$.
6. Write down the expansion of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ.
7. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
8. What is the probability of getting a head and a tail when two coins are tossed simultaneously.
9. Write down the probability mass function for the Binomial distribution.

PART B

Answer any FIVE questions
11. Find the $n^{\text {th }}$ differential coefficient of $x^{2} \log x$.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Show that $\log (x+2 h)=2 \log (x+h)-\log x-\left[\frac{h^{2}}{(x+h)^{2}}+\frac{h^{4}}{2(x+h)^{4}}+\frac{h^{6}}{3(x+h)^{6}}+\cdots\right]$.
14. Verify Cayley Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$.
15. Find (i) $L\left(\frac{e^{-3 t}-e^{-4 t}}{t}\right)$ (ii) $L(t \sin 2 t)$.
16. Write down the expansion of $\cos 6 \theta$ in terms of $\cos \theta$.
17. Two unbiased dice are thrown. Find the probability that (i) both the dice show the same number (ii) the first die shows 6 (iii) the total of the numbers on the dice is 8 (iv) the total of the numbers on the dice is 13 .
18. An insurance company insures 4,000 people against loss of both eyes in a car accident. Based on previous data, the rates were computed on the assumption that on the average 10 persons in $1,00,000$ will have car accident each tear that result in this type of injury. What is the probability that more than 3 of the insured will collect on their policy in a given year?

PART C

19. (a) Find the lengths of the subtangent and subnormal at (a, a) on the cissoid $y^{2}=\frac{x^{3}}{2 a-x}$.
(b) Find the maximum and minimum values of the function $f(x)=2 x^{3}-3 x^{2}-36 x+10$.
20. (a) Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right)$.
(b) Find the sum to intinity of the series $1+\frac{2^{3}}{2!}+\frac{3^{3}}{3!}+\frac{4^{3}}{4!}+\cdots \infty$.
21. (a) Solve the equation $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}-5 y=5$, given that $y=0, \frac{d y}{d t}=2$ when $t=0$.
(b) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiples of θ.
22. (a) If $\sin (A+i B)=x+i y$, prove that (i) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$ (ii) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$.
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members:

Age(in years)	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

