LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2016
MT 3964-FORMAL LANGUAGES AND AUTOMATA

Date: 03-05-2016
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00
ANSWER ALL QUESTIONS
I a) Design a DFA which can accept a positive number divisible by 3 .
[OR]
b) Construct a finite automaton to accept $\operatorname{Lover}\{0,1\}$ in which every string starts with 0 and ends with 1
c) i) Let r be a regular expression. Then prove that there exists an NFA with $\in-$ moves that accepts $\mathrm{L}(\mathrm{r})$.
ii) Define regular expressions. Write an NFA with \in - moves to accept $(10+01)^{*}+\left(10+(0+1)^{*}\right)^{*}$.
[OR]
d)i) Construct an equivalent DFA with minimum number of nodes for the following NFA.

ii) Construct DFA equivalent to the following NFA.

	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{q}, \mathrm{s}\}$	$\{\mathrm{q}\}$
${ }^{*} \mathrm{q}$	$\{\mathrm{r}\}$	$\{\mathrm{q}, \mathrm{r}\}$
r	$\{\mathrm{s}\}$	$\{\mathrm{p}\}$
s	-	$\{\mathrm{p}\}$

IIa) Prove that $L=\left\{a^{p} / p\right.$ is a prime $\}$ is not regular.
[OR]
b) State and prove pumping lemma.
c)i) Let $L_{1}=(\mathbf{0}+\mathbf{1}) * \mathbf{0 1 1}$ and $L_{2}=(\mathbf{0}+\mathbf{1}) * \mathbf{1 1 0}$. Construct an NFA to accept $L_{1} \cup L_{2}$.
ii) Let L_{1} be the set of all strings over alphabet $\{0,1\}$ ending in 01 . Let L_{2} be the set of all strings over alphabet $\{0,1\}$ having even number of 1 's. Construct a DFA for $L_{1} \cap L_{2}$ and $L_{1} \cup L_{2}$
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

III a) Construct a grammar to generate roll numbers of all students of your class .
[OR]
b) Construct a regular grammar to generate all binary numbers .
c i) Discuss about Chomskey's hierarchy.
ii) Write a grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
di) Show that the grammar $E \rightarrow E+E / E * E /(E) / a / b$ is ambiguous. Also remove ambiguity
ii) Let G be a grammar with production rules $\mathrm{S} \rightarrow \mathrm{abSb} / \mathrm{a} / \mathrm{aAb}, \mathrm{A} \rightarrow \mathrm{bS} / \mathrm{aAAb}$. Construct a CNF to generate G.

IV a) Define a PDA and explain instantaneous descriptions.
[OR]
b) Define derivation trees and give an example.
c) If a language L is accepted by a PDA A by final state then prove that there exist a PDA B accepts the same language L by empty stack.
[OR]
d) Design a PDA for accepting the set of all strings over $L=\left\{w c w^{R} / w \in(a, b)^{*}\right\}$ The string should be accepted both by
(1) Empty stack.
(2) Final state.

V a) Discuss about an ID and moves between the ID's of a Turing Machine.
[OR]
b) Write about any two properties of a TM .
c) Design a TM to perform proper subtraction.
[OR]
d) Design a Turing Machine to compute
(i) $f(n)=n+4, n \in N$.
(ii) $f(n)=3 n, n \in N$.

