

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2016

MT 3964 - FORMAL LANGUAGES AND AUTOMATA

Date: 03-05-2016 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

ANSWER ALL QUESTIONS

I a) Design a DFA which can accept a positive number divisible by 3.

[OR]

b) Construct a finite automaton to accept L over $\{0,1\}$ in which every string starts with 0 and ends with 1

(5)

- c) i) Let r be a regular expression. Then prove that there exists an NFA with ∈- moves that accepts L(r).
 - ii) Define regular expressions. Write an NFA with \in moves to accept $(10 + 01)^* + (10 + (0 + 1)^*)^*$.

(8+7)

[OR]

d)i) Construct an equivalent DFA with minimum number of nodes for the following NFA.

ii) Construct DFA equivalent to the following NFA.

	0	1
$\rightarrow p$	{q, s}	{q}
*q	{r}	{q,r}
r	{s}	{p}
S	-	{p}

(8+7)

IIa) Prove that $L = \{a^p / p \text{ is a prime}\}$ is not regular.

|OR

b) State and prove pumping lemma.

(5)

- c)i) Let $L_1 = (0 + 1)*011$ and $L_2 = (0 + 1)*110$. Construct an NFA to accept $L_1 \cup L_2$.
 - ii) Let L_1 be the set of all strings over alphabet $\{0,1\}$ ending in 01. Let L_2 be the set of all strings over alphabet $\{0,1\}$ having even number of 1's. Construct a DFA for $L_1 \cap L_2$ and $L_1 \cup L_2$

(5 + 10)

[OR]

d) 1	Minimize tl	he follo	owing au	itomaton.			
		0	1				
	\rightarrow A	В	F				
	В	G	С				
	* C	A	С				
	D	С	G				
	E	H	F				
	F	C	G				
	G	G	E				
	Н	G	С		(15)		
III a)	Construct	a gram	mar to g	generate roll numbers of all students of your class.			
b)	Construct	a regul	ar gram	[OR] mar to generate all binary numbers.	(5)		
U)	Construct	a regui	iai graiii	mai to generate an omary numbers.	(3)		
c i)	Discuss ab	out Ch	omskey	's hierarchy.			
ii) Write a grammar to generate $L = \{a^n b^n c^n / n \ge 1\}$.					(7+8)		
[OR]							
d i)	Show that	the gra		$E \rightarrow E + E / E * E / (E) / a / b$ is ambiguous. Also remove			
ambiguity							
ii)							
Construct a CNF to generate G.					(7+8)		
IV a)	(a) Define a PDA and explain instantaneous descriptions.						
h)	b) Define derivation trees and give an example.						
U)	b) Define derivation nees and give an example.						
c) If a language L is accepted by a PDA A by final state then prove that there exist							
	a PDA B accepts the same language L by empty stack.						
d)	[OR] Design a PDA for according the set of all strings ever $L = \{u_{\alpha}u^{R} \mid u_{\alpha} \in (a, b)^{*}\}$						
u)							
	The string should be accepted both by (1) Empty stack.						
	(1) Empty stack. (2) Final state.						
	(2) 1 mai 5	tate.			(7+8)		
V a)	Discuss ab	out an	ID and	moves between the ID's of a Turing Machine.			
	[OR]						
b)	b) Write about any two properties of a TM.						
c)	c) Design a TM to perform proper subtraction.						
				(OD)			

d) Design a Turing Machine to compute

(i)
$$f(n) = n + 4, n \in N$$
.

(ii)
$$f(n) = 3n, n \in \mathbb{N}$$
. (7 + 8)