LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2016
MT 3965-NUMERICAL ANALYSIS

Date: 03-05-2016
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

ANSWER ALL THE QUESTIONS:

$(5 \times 20=100)$

1. (a) Explain Bisection Method.

(OR)

(b) Solve for a root of $x-\cos x=0$ by Regula - Falsi method.
(c) Find a real root $x^{3}-2 x-5=0$ between 2 and 3 correct to three decimal places by secant method.
(OR)
(d) Find a positive root of $x^{3}-5 x+3=0$ by Newton Raphson method.
2. (a) If $y(x)$ represents the number of people living at age x in a life table, find $y(47)$ if $y(20)=$ $512, y(30)=439, y(40)=346, y(50)=243$.
(OR)
(b) A third degree polynomial passes through the points $(0,-1),(1,1),(2,1)$ and (3,-2). Using Newton's forwards formula, find the polynomial. Hence find the value at 1.5 .
(c) State and prove Gauss Forward formula for interpolation.
(OR)
(d) Given the following table

θ°	0	5	10	15	20	25	30
$\tan \theta^{\circ}$	0	0.0875	0,1763	0.2679	0.3640	0.4663	0.5774

Find the value of $\tan 16^{\circ}$ using Stirling's formula.
3. (a) Dividing the range into 10 equal parts, find the approximate value of $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule.
(OR)
(b) Derive Simpson's $1 / 3$ rule.
(c) (i) Derive the formula to find the derivative of a function given by a tabulated set of values using Newton's backward difference interpolation formula.
(ii) Find $f^{\prime}(x)$ at $x=0.4$ from the following table

\cdots	0.1	0.2	0.3	0.4
$\stackrel{+}{+\infty}$	1.10517	1.22140	1.34986	1.49182

(d) Find the maximum and minimum values of y from the following table

mme	-2	-1	0	1	2	3	4
*	2	-0.25	0	-0.25	2	15.75	56

4. (a) What do you mean by "direct method" of solving a system of linear equations?
(OR)
(b) Solve by Gauss Jordan method $x+y+z=9 ; 2 x-3 y+4 z=13 ; 3 x+4 y+5 z=40$.
(c) Solve the system of equations correct to three decimal places using Gauss Jacobi's method: $x+17 y-$ $2 z=48 ; 30 x-2 y+3 z=75 ; 2 x+2 y+18 z=30$.
(OR)
(d) Solve the following equations by Gauss Seidel method

$$
\begin{equation*}
27 x+6 y-z=85 ; x+y+54 z=110 ; 6 x+15 y+2 z=72 \tag{15}
\end{equation*}
$$

5. (a) Apply Modified Euler Method to find $y(0.2)$ and $y(0.4)$ given $y=x^{2}+y^{2} ; y(0)=1$ by taking $h=0.2$.

(OR)

(b) Explain Picard's method of successive approximation.
(c) Apply Runge Kutta method to find approximate value of y for $\mathrm{x}=0.2$ in steps of 0.1 if $\frac{d y}{d x}=x+y^{2}$ given that $\mathrm{y}=1$ when $\mathrm{x}=0$.
(OR)
(d) Using the finite difference method, find $y(0.25), y(0.5)$ and $y(0.75)$ satisfying the differential equation $\frac{d^{2} y}{d x^{2}}+y=x$ subject to the boundary conditions $y(0)=0$ and $y(1)=2$.

