CUCENT LAN VESTRA

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - APRIL 2016

MT 3965 - NUMERICAL ANALYSIS

Date:	03-05-2016
Time	09:00-12:00

Dept. No. Max.: 100 Marks

$(5 \times 20 = 100)$

ANSWER ALL THE QUESTIONS:

1. (a) Explain Bisection Method.

(OR)

(b) Solve for a root of $x - \cos x = 0$ by Regula – Falsi method.

(5)

(c) Find a real root $x^3 - 2x - 5 = 0$ between 2 and 3 correct to three decimal places by secant method.

(OR)

- (d) Find a positive root of $x^3 5x + 3 = 0$ by Newton Raphson method. (15)
- 2. (a) If y(x) represents the number of people living at age x in a life table, find y(47) if y(20) = 512, y(30) = 439, y(40) = 346, y(50) = 243.

(OR)

- (b) A third degree polynomial passes through the points (0, -1), (1,1), (2,1) and (3, -2). Using Newton's forwards formula, find the polynomial. Hence find the value at 1.5. (5)
 - (c) State and prove Gauss Forward formula for interpolation.

(OR)

(d) Given the following table

θ°	0	5	10	15	20	25	30
tan θ°	0	0.0875	0,1763	0.2679	0.3640	0.4663	0.5774

Find the value of tan 16° using Stirling's formula.

(15)

3. (a) Dividing the range into 10 equal parts, find the approximate value of $\int_0^{\pi} \sin x \, dx$ by Trapezoidal rule.

(OR)

(b) Derive Simpson's $\frac{1}{3}$ rule.

(5)

- (c) (i) Derive the formula to find the derivative of a function given by a tabulated set of values using Newton's backward difference interpolation formula.
 - (ii) Find f'(x) at x = 0.4 from the following table

from	0.1	0.2	0.3	0.4
# from	1.10517	1.22140	1.34986	1.49182

(8+7)

(d) Find the maximum and minimum values of y from the following table

<u>misi</u> −2	-1	0	1	2	3	4
* - 2	-0.25	0	-0.25	2	15.75	56

(15)

4. (a) What do you mean by "direct method" of solving a system of linear equations?

(OR)

(b) Solve by Gauss Jordan method x + y + z = 9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40.

(5)

(c) Solve the system of equations correct to three decimal places using Gauss Jacobi's method: x + 17y - 2z = 48; 30x - 2y + 3z = 75; 2x + 2y + 18z = 30.

(OR)

(d) Solve the following equations by Gauss Seidel method

$$27x + 6y - z = 85$$
; $x + y + 54z = 110$; $6x + 15y + 2z = 72$. (15)

5. (a) Apply Modified Euler Method to find y(0.2) and y(0.4) given $y = x^2 + y^2$; y(0) = 1 by taking h = 0.2.

(OR)

(b) Explain Picard's method of successive approximation.

(5)

(c) Apply Runge Kutta method to find approximate value of y for x = 0.2 in steps of 0.1 if $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0.

(OR)

(d) Using the finite difference method, find y(0.25), y(0.5) and y(0.75) satisfying the differential equation $\frac{d^2y}{dx^2} + y = x$ subject to the boundary conditions y(0) = 0 and y(1) = 2. (15)
