LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER – APRIL 2016

MT 4200 - ADVANCED MATHEMATICS FOR PHYSICS

Date: 27-04-2016 Time: 09:00-12:00

Dept. No.

Max. : 100 Marks

Section A

Answer ALL questions:

1. Evaluate $\frac{dx}{4x^2-4x+2}$.

2. Define Even and odd function.

- 3. State the necessary and sufficient condition for the ordinary differential equation to be exact.
- 4. Write the general solution when the roots are real and distinct.
- 5. Prove that $\beta(m,n) = \beta(n,m)$.
- 6. Define Beta function.
- 7. Define irrotational vector.
- 8. State Gauss theorem.
- 9. Define group.

10. Give an example to show that every group need not be an abelian group.

Section B

Answer any FIVE questions:

11. Evaluate $I = \int_0^{\frac{\pi}{2}} \log \sin x \, dx$.

- 12. Express $f(x) = \frac{(\pi x)}{2}$ as a fourier series with period 2π , to be valid in the interval 0 to 2π .
- 13. Evaluate $\int (3x-2)\sqrt{x^2+x+1}dx$.
- 14. Solve $(D^2 3D + 2)y = sin3x$.
- 15. Solve $xdx + ydy = a^2 \frac{xdy ydx}{x^2 + y^2}$.
- 16. Evaluate $\iint xy(x+y)dxdy$ over the area between the curves $y = x^2$ and y = x.
- 17. If $\vec{F} = x^2 y \vec{\imath} + y^2 z \vec{\jmath} + z^2 x \vec{k}$, then find curl curl \vec{F} .
- 18. Prove that the set $\{1, \omega, \omega^2\}$ is an abelian multiplicative finite group of order 3.

 $10 \times 2 = 20$

 $5 \times 8 = 40$

<u>Section C</u>		
Answer any TWO questions:		$2\times 20=40$
19.	(a) Find the Cosine series in the range 0 to π for $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$	
	(b) Define Half Range Fourier Series.	(16+4)
20.	(a) Solve $(D^2 + 16)y = 2e^{-3x} + \cos 4x$ (b) Solve $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \log x$.	(10+10)
21.	(a) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma function and evaluate the integral	
	$\int_0^1 x^5 (1-x^3)^{10} dx$.	
	(b) Prove that $\left(\frac{1}{2}\right) = \sqrt{\pi}$.	(15+5)
22.	Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\vec{i} + xy\vec{j}$ in the rectangular region in the XOY by the lines $x = 0, x = a, y = 0$ and $y = b$.	plane bounded (20)
