LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER – APRIL 2016

MT 4203 - ADVANCED MATHEMATICS FOR PHYSICS

(From 06th – 09th Batches)

Date: 27-04-2016 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

SECTION – A

ANSWER ALL QUESTIONS:

- 1. Evaluate $\log x \, dx$.
- 2. Define Fourier series.
- 3. State the necessary and sufficient condition for the ordinary differential equation to be exact.
- 4. Write the general solution when the roots are real and unequal.
- 5. Prove that $\beta(m,n) = \beta(n,m)$.
- 6. Define Gamma function.
- 7. Prove that the vector $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ is Solenoidal.
- 8. Show that the vector $2xy\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 + 1)\vec{k}$ is irrotational.
- 9. Define cyclic group.
- 10. Give an example to show that every group need not be an abelian group.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. State and prove any two properties of definite integrals.
- 12. Evaluate xy(x + y)dxdy over the area between the curves $y = x^2$ and y = x.
- 13. Find a sine series for f(x) = x in the interval $(0, \pi)$.
- 14. Evaluate $\int x^2 e^{3x} dx$.
- 15. Solve $(D^2 + 3D + 2)y = ix^2$.
- 16. If $\vec{F} = x^2 y \vec{\iota} + y^2 z \vec{j} + z^2 x \vec{k}$, then find *curl curl* \vec{F} .
- 17. Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of the beta function and hence evaluate $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$.
- 18. Prove that the set $\{1, \omega, \omega^2\}$ is an abelian multiplicative finite group of order 3.

$(5 \times 8 = 40)$

 $(10 \times 2 = 20)$

SECTION – C	
ANSWER ANY TWO QUESTIONS:	$(2 \times 20 = 40)$
19. (a) Find the Cosine series for $f(x) = \sin x$ in $0 < x < \pi$.	
(b) Define normal subgroup and left cosets.	(16+4)
20. (a) Solve $(D^2 + 6D + 9)y = e^{2x} + \cos x$	
(b) Solve $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$.	(12+8)
21. (a) Prove that $\beta(m, n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(n+n)}$.	
(b) Prove that $\left(\frac{1}{2}\right) = \overline{\pi}$.	(15+5)

22. Verify Gauss Divergence theorem for $\vec{F} = 4xz\vec{i} - y^2\vec{j} + yz\vec{k}$, over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. (20)
