LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 **B.Sc.** DEGREE EXAMINATION – CHEMISTRY FOURTH SEMESTER - APRIL 2016 **MT 4204 - ADVANCED MATHS FOR CHEMISTRY** Date: 27-04-2016 Dept. No. Max.: 100 Marks Time: 09:00-12:00 PART A $(10 \ge 2 = 20)$ **Answer ALL questions:** 1. Prove that $\beta(m, n) = \beta(n, m)$. 2. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{10}\theta \ d\theta$. 3. Show that $\vec{A} \approx 3y^4 z^2 \vec{\imath} + 4x^3 z^2 \vec{\jmath} - 3x^2 y^2 \vec{k}$ is solenoidal. 4. Find $L^{-1}\left(\frac{1}{s+2}\right)$. 5. Remove the fractional coefficient from the equation $x^3 - \frac{1}{4}x^2 + \frac{1}{3}x - 1 = 0$. 6. Find the equation whose roots are the roots of $x^5 - 6x^4 + 6x^3 + 9x^2 + 2x - 7 = 0$ with signs changed. 7. Write the formula for karl Pearson's coefficient of correlation. 8. Define Regression Coefficients. 9. State Newton's Forward formula 10. Solve by Cramer's rule x + y = 10 and 2x - y = 5. PART B Answer ANY FIVE questions (5 X 8 = 40)11. Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 x^5 (1-x^3)^{10} dx$. 12. Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which x, y are each $0 \text{ and } x + y \leq 1.$ 13. Find $L(t e^{-t} sint)$.

14. Form an equation which shall have root $3-\sqrt{-2}$.

15. If a + b + c + d = 0, show that $\frac{a^5 + b^5 + c^5 + d^5}{5} = \frac{a^2 + b^2 + c^2 + d^2}{2} \cdot \frac{a^3 + b^3 + c^3 + d^3}{3}$.

16. Fit a straight line for the following data.

Х	1	2	3	4	5	6	7	8	9	10
Y	52.5	58.7	65	70.2	75.4	81.1	87.2	95.5	102.5	108.4

17. Using Gauss – Seidel method solve the equations 2x + y + z = 4, x + 2y + z = 4and x + y + 2z = 4.

18. Find a root of the equation $x^3 - x - 11 = 0$ correct to three decimals using bisection method.

PART CAnswer ANY TWO questions: $(2 \times 20 = 40)$ 19. (a) Evaluate $r\sqrt{a^2 - r^2} dr d\theta$ over the upper half of the circle $r = a \cos\theta$.(b) Prove that $\beta(m, n) = \frac{r(m)\Gamma(n)}{\Gamma(m+n)}$.(10+10)20. (a) Find $L^{-1}\left[\frac{1}{(s+1)(s^2+2s+2)}\right]$.(b) Using Laplace transformation solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$ given that $y = \frac{dy}{dt} = 0$, when t = 0.(10+10)21. (a) Solve the equation $6x^6 - 35x^5 + 56x^4 - 56x^2 - 6 = 0$.(10+10)(b) Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ may be in geometric progression. Hence solve the equation $27x^3 + 42x^2 - 28x - 8 = 0$.

22. (a) Obtain the equations of two lines of regressions for the following data.

X :	65	66	67	67	68	69	70	72
Y :	67	68	65	68	72	72	69	71

(b) Solve $x^3 + 2x^2 + 10x - 20 = 0$ by Newton – Raphson method. (10+10)
