LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2016
MT 4204-ADVANCED MATHS FOR CHEMISTRY

Date: 27-04-2016
Time: 09:00-12:00

Dept. No. \square

PART A

Answer ALL questions:

$(10 \times 2=20)$

1. Prove that $\beta(m, n)=\beta(n, m)$.
2. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{10} \theta d \theta$.
3. Show that $\vec{A}=3 y^{4} z^{2} \vec{\imath}+4 x^{3} z^{2} \vec{\jmath}-3 x^{2} y^{2}$ 点 is solenoidal.
4. Find $L^{-1}\left(\frac{1}{s+2}\right)$.
5. Remove the fractional coefficient from the equation $x^{3}-\frac{1}{4} x^{2}+\frac{1}{3} x-1=0$.
6. Find the equation whose roots are the roots of $x^{5}-6 x^{4}+6 x^{3}+9 x^{2}+2 x-7=0$ with signs changed.
7. Write the formula for karl Pearson's coefficient of correlation.
8. Define Regression Coefficients.
9. State Newton's Forward formula.
10. Solve by Cramer's rule $x+y=10$ and $2 x-y=5$.

PART B

Answer ANY FIVE questions

$(5 \times 8=40)$
11. Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Gamma functions and evaluate the integral $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.
12. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region for which x, y are each ≥ 0 and $x+y \leq 1$.
13. Find $L\left(t e^{-t} \sin t\right)$.
14. Form an equation which shall have root $3-\sqrt{ }-2$.
15. If $a+b+c+d=0$, show that $\frac{a^{5}+b^{5}+c^{5}+d^{5}}{5}=\frac{a^{2}+b^{2}+c^{2}+d^{2}}{2} \cdot \frac{a^{3}+b^{3}+c^{3}+d^{3}}{3}$.
16. Fit a straight line for the following data.

X	1	2	3	4	5	6	7	8	9	10
Y	52.5	58.7	65	70.2	75.4	81.1	87.2	95.5	102.5	108.4

17. Using Gauss - Seidel method solve the equations $2 x+y+z=4, x+2 y+z=4$ and $x+y+2 z=4$.
18. Find a root of the equation $x^{3}-x-11=0$ correct to three decimals using bisection method.

PART C

19. (a) Evaluate $\iint r \sqrt{a^{2}-r^{2}} d r d \theta$ over the upper half of the circle $r=a \cos \theta$.
(b) Prove that $\beta(m \cdot n)=\frac{r(m) \Gamma(n)}{r(m+n)}$.
20. (a) Find $L^{-1}\left[\frac{1}{(s+1)\left(s^{2}+2 s+2\right)}\right]$.
(b) Using Laplace transformation solve $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3 y=\sin t$ given that $y=\frac{d y}{d t}=0$, when $t=0$.
21. (a) Solve the equation $6 x^{6}-35 x^{5}+56 x^{4}-56 x^{2}-6=0$.
(b) Find the condition that the roots of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$ may be in geometric progression. Hence solve the equation $27 x^{3}+42 x^{2}-28 x-8=0$.
22. (a) Obtain the equations of two lines of regressions for the following data.

$\mathrm{X}:$	65	66	67	67	68	69	70	72
$\mathrm{Y}:$	67	68	65	68	72	72	69	71

(b) Solve $x^{3}+2 x^{2}+10 x-20=0$ by Newton - Raphson method.

