LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.A., B.SC. \& B.COM DEGREE EXAMINATION - ECONO., STATS, COMM. CORP. SEC.

FOURTH SEMESTER - APRIL 2016
MT 4205 - BUSINESS MATHEMATICS
\square Max. : 100 Marks
Time: 09:00-12:00

PART A

Answer ALL questions:

$(10 \times 2=20)$

1. Define cost function of a firm.
2. Find the equilibrium price and quantity for the functions $Q_{d}=2-0.02 P$ and

$$
Q_{s}=0.2+0.07 P
$$

3. If $x^{2}+y^{2}-2 x=0$, then find $\frac{d y}{d x}$.
4. Find the elasticity of demand for the function $x=\frac{27}{p^{3}}$.
5. Evaluate $\int\left(3 x^{-1}+4 x^{2}-3 x+8\right) d x$.
6. Evaluate $\int_{2}^{4}(3 x-2)^{2} d x$.
7. If $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ 2 & -3\end{array}\right)$, find $A+B$.
8. Show that $\left|\begin{array}{lll}1 & x & y+z \\ 1 & y & z+x \\ 1 & z & x+y\end{array}\right|=0$.
9. If $\frac{x+1}{(x-1)(2 x+1)}=\frac{A}{x-1}+\frac{B}{2 x+1}$ then find A and B.
10. Define feasible solution.

PART B

Answer ANY FIVE questions:

11. The total cost function of a firm is given by $C=0.04 q^{3}-0.9 q^{2}+10 q+10$. Find (a) Average cost (AC) (b) Marginal cost (MC) (c) Slope of AC (d) Slope of MC
12. If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$ then show that $\left(1+x^{2}\right) y_{2}+x y_{1}=m^{2} y$.
13. Find the maximum and minimum values of the function $f(x)=x^{4}+2 x^{3}-3 x^{2}-4 x+4$.
14. Evaluate $\int \frac{x e^{x}}{(x+1)^{2}} d x$.
15. Evaluate $\int \frac{x}{(x-1)(2 x+1)} d x$.
16. Prove that $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(a+b+c)^{3}$.
17. Resolve into partial fraction $\frac{x}{(x-1)\left(x^{2}+x+1\right)}$.
18. Find the inverse of the matrix $A=\left(\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right)$.

PART C

Answer ANY TWO questions:

19. (a) If AR and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{A R}{A R-M R}$. Verify this for the linear demand law $p=a+b x$.
(b) Find the first and second order partial derivatives of $\log \left(x^{2}+y^{2}\right)$.
20. (a) Let the cost function of a firm be given by the following equation: $C=300 x-10 x^{2}+\frac{1}{3} x^{3}$ where C stands for cost and x for output. Calculate (i) output, at which marginal cost is minimum (ii) output, average cost is minimum (iii) output, at which average cost is equal to marginal `cost.
(b) If the marginal revenue function for output x is given by $R_{m}=\frac{6}{(x+2)^{2}}+5$, find the total
revenue by integration. Also deduce the demand function.
(10+10)
21. (a) Find CS and PS for the demand curve $D(x)=16-x^{2}$ and supply curve $S(x)=4+2 x^{2}$.
(b)Solve the system of the following equations using matrix method $x+y+z=7$;
$x+2 y+3 z=16 ; x+3 y+4 z=22$.
22. (a) A dealer wishes to purchase a number of fans and sewing machines. He has only Rs. 5760 to invest and has space for at most 20 items. A fan costs him Rs. 360 and a sewing machine Rs.240. His expectation is that he can sell a fan at a profit of Rs. 22 and sewing machine at a profit of Rs. 18 . Assuming that he can sell all the items that he can buy, how should he invest his money in order to maximize his profit?
(b)A factory manufactures two articles A and B . To manufacture the article A , a certain machine has to be worked for 1.5 hours and in addition a craftsman has to work for 2 hours. To manufacture the article B, the machine has for 1.5 hours. In a week the factory can avail of 80 hours of machine time and 70 hours craftsman's time. The profit on each article A is Rs. 5 and that on each article B is Rs. 4. If all the articles produced can be sold away, how many of each kind should produce to earn the maximum profit per week. Formulate the linear programming problem.
