LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER - APRIL 2016

MT 4503 – ALGEBRAIC STURUCTURE - I

Date: 20-04-2016	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		

<u>PART – A</u>

(10 × 2 = 20 marks)

 $(5 \times 8 = 40 \text{ marks})$

- 1. Let Z be set of integers. Define $a \approx b$ if a b is divisible by 5. Show that \approx is an equivalence relation.
- 2. Prove that $(ab)^2 = a^2b^2$ for all a and b in a group G if and only if G is abelian.
- 3. Define order of an element of a group.
- 4. Show that every subgroup of an abelian group is normal.
- 5. Let Z be set of all integers and $h: Z \to Z$ be defined by h(x) = 2x. Show that it is a group homomorphism.
- 6. Define an automorphism of a group.
- 7. If R is ring, show that for a,b in R (i) (- a) b = a(-b) = -(ab) and (ii) (-a) (-b)=ab.

8. Give an example of an integral domain which is not a field.

- 9. Define prime ideal of a ring.
- 10. Define Euclidean ring.

Answer ALL questions

<u>PART – B</u>

Answer any FIVE questions

- 11. If H and K are subgroups of a group G, show that HK is a subgroup of G if and only if HK = KH.
- 12. Show that the union of two subgroups of a group G is a subgroup of G if and only if one is contained in the other.
- 13. Show that every subgroup of a cyclic group is also cyclic.
- 14. Show a subgroup N of a group G is normal in G if and only if product of two left cosets of N in G is also a left coset of N in G.
- 15. Let h be a homomorphism of a group G onto a group G'. Let N' be a normal subgroup of G' and let $N = \{x \in G : h(x) \in N'\}$. Show that $G/N \approx G'/N'$.
- 16. Let R be a commutative ring with unit element whose only ideals are (0) and R. Show that R is a field.
- 17. Show that an ideal of the ring Z of integers is a maximal ideal of Z if and only if it is generated by a prime number.
- 18. Let R be a Euclidean ring. Show that any two elements a and b in R have a greatest common divisor $d = \lambda a + \mu b$ for some λ and μ in R.

<u>PART – C</u>			
Answer any TWO questions	(2 × 20 =40 marks)		
19. (a) Show that a nonempty subset H of a group G is a subgroup of G	G if and only if		
$a,b \in H$ implies that $ab^{-1} \in H$.			
(b) State and prove Lagrange's theorem.	(8+12 marks)		
20. (a) Let G be a group. Show that (i) the set of all inner automorph	isms I(G) is a normal subgroup of		
A(G), the group of all automorphisms of G, (ii) $I(G) \approx G/Z(G)$, where $Z(G)$ is the center of G.		
(b) Show that every permutation σ of a finite set E can be expressed	l as a product of disjoint cycles and		
this representation is unique upto the order of the factors.	(10+10 marks)		
21. (a) If A is an ideal of a ring R show that R/A is also a ring.			
(b) State and prove fundamental theorem of ring homomorphism.	(10+10 marks)		
22. (a) Let R be a commutative ring with unity and M be an ideal of R.	Show that M is a maximal ideal		
of R if and only if R/M is a field.			
(b) Show that Z(i) is a Euclidean ring.	(10+10 marks)		

\$\$\$\$\$\$