# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

**M.Sc.** DEGREE EXAMINATION – **MATHEMATICS** 

FOURTH SEMESTER - APRIL 2016

**MT 4810 - FUNCTIONAL ANALYSIS** 

Date: 15-04-2016 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

# Answer all Questions. All questions carry equal marks.

1. (a) Prove that every vector space X contains a set of linearly independent elements that generates X.

(**OR**)

- (b) If  $f \in X^*$ , then prove that the null space of f, Z (f) has deficiency 0 or 1. (5 marks)
- (c) Let X be a real vector space, let Y be a subspace of X and p be a real valued function on X such that  $p(x + y) \le p(x) + p(y)$  and p(ax) = ap(x) for all  $x, y \in X$ , for  $a \ge 0$ . If f is a linear functional on Y and  $f(x) \leq p(x)$  for all  $x \in Y$ , prove that there is a linear functional F on X such that F(x) = f(x) for all  $x \in Y$  and  $F(x) \leq p(x)$  for all  $x \in X$ .

# (15 marks)

### (OR)

(d) i) If X is a vector space, Y and Z are subspaces of X and is complementary to Z, then prove that every element of X/Y contains exactly one element of Z.

ii) Prove that there is a natural isomorphism between a subspace of  $X^{**}$  and X itself.

(6+9 marks)

2. (a) Let X and Y be normed linear spaces and T be a linear transformation. Prove that T is continuous if T is bounded. Is the converse true? Justify.

(**OR**)

- (b) State and prove F.Riesz lemma.
- (c) State and prove Hahn Banach Theorem for a complex normed linear space.

(**OR**)

- (d) State and prove uniform boundedness principle theorem. (15 marks)
- 3. (a) Let X be a normed vector space and let X' be the dual of X. If X' is separable then prove that X is separable.

### (**OR**)

- (b) Let X be a reflexive normed linear space. Prove that every closed subspace of X is reflexive. (5 marks)
- (c) State and prove open mapping theorem.

# (**OR**)

- (d) (i) If P is a projection on a Banach space X and if M and N are its range and null space respectively then prove that M and N are closed linear subspaces of X where  $X = M \oplus N$ .
  - (ii) If M is a direct sum of X and N is a closed subspace with  $X = M \oplus N$  then prove that P is a projection where Px = y for x = y + z,  $y \in M$ ,  $z \in N$ . (8+7 marks)



(15 marks)

(5 marks)

| 4. | (a) State and prove Bessel's inequality.                                                                                                                    |            |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|    | (b) If T is an operator in a Hilbert space X, then show that $(Tx, x) = 0$ $T = 0$ .                                                                        | (5 marks)  |  |
|    |                                                                                                                                                             |            |  |
|    | (c) 1) Prove that a real Banach space is a Hilbert space if and only if the parallelogram law holds in it.                                                  |            |  |
|    | ii) If <i>T</i> is an operator on a Hilbert space <i>X</i> , show that <i>T</i> is a normal if and only if its real and imaginary parts commute. (9+6 mark) |            |  |
|    | (OR)                                                                                                                                                        |            |  |
|    | (d) If M is a closed subspace of a Hilbert space X, then prove that every $x \in X$ has unique                                                              |            |  |
|    | representation $x = y + z$ , $y \in M, z \in M^{\perp}$ .                                                                                                   | (15 marks) |  |
| 5. | (a) State and prove Riesz-Representation theorem.                                                                                                           | (5 marks)  |  |
|    | (OR)                                                                                                                                                        |            |  |
|    | (b) Prove that every zero divisor in Banach algebra A is a topological divisor in A.                                                                        |            |  |
|    | (c) State and prove the Spectral theorem.                                                                                                                   |            |  |
|    | (OR)                                                                                                                                                        |            |  |
|    | (d) Prove that the mapping $f: G \to G$ given by $f(x) = x^{-1}$ is continuous and a                                                                        |            |  |
|    | homeomorphism.                                                                                                                                              | (15 marks) |  |

\*\*\*\*\*