B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - APRIL 2016
 MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date: 25-04-2016
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

SECTION A

Answer ALL the questions:
$(10 \times 2=20)$

1. Define a phrase structure Grammar.
2. What is a regular set?
3. Write a grammar for the language $L(G)=\left\{a^{n} b^{m} / n, m \geq 1\right\}$.
4. Define homomorphism and ε - free homomorphism of a language.
5. If $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{a, b, c\}, \mathrm{S} \rightarrow a \mathrm{~A} b, \mathrm{~A} \rightarrow a \mathrm{~A} b, \mathrm{~A} \rightarrow c, \mathrm{~S})$, find $L(G)$.
6. Define an ambiquous grammar.
7. Let $G=(N, T, P, S)$ where $N=\{S, A\}, T=\{a, b\}$ and P consists of the rules $\{S \rightarrow a A b, S \rightarrow a$ $, S \rightarrow a b S b, A \rightarrow b S, A \rightarrow a A A b\}$. Draw the derivation tree for the word $a b a b \in L(G)$.
8. Define the intersection of two languages.
9. Let $L_{1}=\{x, x y, z\}$ and $L_{2}=\{y, y x\}$ be the finite languages, then find (i) $L_{1} L_{2}$ (ii) $L_{2} L_{1}$.
10. Draw the state diagram for the non-deterministic finite state automaton $M=\left(Q, I, \delta, q_{0}, F\right)$ where $Q=\left\{q_{0}, q_{1}\right\}, I=\{0,1\}, F=\left\{q_{1}\right\}$ and δ is defined as follows:

\%	0	1
\%	\{-m	\%
行	\%s.	\%

SECTION B

Answer any FIVE questions:
11. Construct a context free grammar for the language $L=\left\{a^{2 n} b c\right\}$. Also show that the grammar constructed generates L.
12. Let $L(G)=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$. Show that $L(G)$ is accepted by the context sensitive grammar $G=(N$, $T, P, S)$ where $N=\{S, B\}, T=\{a, b, c\}, P$ consists of the following productions: $S \rightarrow a S B, S \rightarrow a b c$, $b B \rightarrow b b c, c B \rightarrow B c$.
13. Write a note on Chomskian hierarchy.
14. Let G be a grammar with $S \rightarrow a S S a \mid b$. For the strings $a a b b a b a$ and $a b a b b a a$ find
(i) a left most derivation
and
(ii) a right most derivation
15. Define Kleene closure of a language. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under star.
16. Let $L=\left\{a^{n} b^{n} / n \geq 1\right\}$. Give an ambiguous and unambiguous grammar to generate L.
17. Let $L=\left\{a^{n} b^{m} / n \neq m\right\}$ and $G=(N, T, P, S)$ where $N=\{S, A, B\}, T=\{a, b\}$ and $P=\{S$ $\rightarrow a S b, S \rightarrow a A, A \rightarrow a A, A \rightarrow a, S \rightarrow a, S \rightarrow b B, B \rightarrow b B, B \rightarrow b, S \rightarrow b\}$ generates L. Write this grammar in Chomsky normal form.
18. Construct a finite automaton that accepts exactly those input strings of 0 's and 1 's that end in 11 .

SECTION C

Answer any TWO questions：

19．（a）If $G=(N, T, P, S)$ where $N=\{S, A, B\}, T=\{a, b\}$ ，and P consists of the following rules：$S \rightarrow a B$ ， $S \rightarrow b A, A \rightarrow a, A \rightarrow a S, A \rightarrow b A A, B \rightarrow b, B \rightarrow b S, B \rightarrow a B B$.
Then prove the following：
$S \stackrel{*}{\Rightarrow} w$ iff w consists of an equal number of $a^{\prime} s$ and $b^{\prime} s$
$A \stackrel{*}{\Rightarrow} w$ iff w has one more a than it has b＇s．
$B \stackrel{*}{\Rightarrow} w$ iff w has one more b than if has $a ' s$
（b）Find a regular grammar to generate $L=(a, b)^{*}$

20．State and prove $u-v$ theorem and illustrate it with an example．

21．（a）State and prove Chomsky normal form．
（b）Let $L=\left\{w c w^{R} / w \in(a, b)^{*}\right\}$ and $G=(N, T, P, S)$ where $N=\{S\}, T=\{a, b, c\}$ and $P=\{S \rightarrow a S a, S \rightarrow b S b, S \rightarrow c\}$ generates L ．Write this grammar in Chomsky normal form．
（10＋10）
22．（a）Define a deterministic finite automaton．
（b）Construct a DFA accepting all strings over $\{0,1\}$ having even number of 0 ＇s and 1 ＇s．
（c）Draw the state diagram for the following non－deterministic finite state automaton， $M=\left(K, I, \delta, q_{0}, F\right)$ where $K=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, I=\{0,1\}, F=\left\{q_{3}\right\}, \delta$ is defined as follows：

\cdots	0	1
$\frac{8}{80}$		
$\stackrel{0}{90}$	\｛号星\}	
$\frac{\square}{\square}$	Ф	
号		\｛謱 ${ }^{\text {a }}$

Check whether the string 11010011 is accepted by the non－deterministic finite automaton．
（3＋7＋10）

