# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

**B.Sc.** DEGREE EXAMINATION – **MATHEMATICS** 

## FIFTH SEMESTER – APRIL 2016

## MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date: 25-04-2016 Time: 09:00-12:00 Dept. No.

## SECTION A

(10x2 = 20)

Max.: 100 Marks

- 1. Define a phrase structure Grammar.
- 2. What is a regular set?

Answer ALL the questions:

- 3. Write a grammar for the language  $L(G) = \{a^n b^m / n, m \ge 1\}$ .
- 4. Define homomorphism and  $\varepsilon$  free homomorphism of a language.
- 5. If G = ({S, A}, {a, b, c}, S  $\rightarrow aAb, A \rightarrow aAb, A \rightarrow c, S$ ), find L(G).
- 6. Define an ambiquous grammar.
- 7. Let G = (N, T, P, S) where  $N = \{S, A\}$ ,  $T = \{a, b\}$  and P consists of the rules  $\{S \rightarrow aAb, S \rightarrow a, S \rightarrow abSb, A \rightarrow bS, A \rightarrow aAAb\}$ . Draw the derivation tree for the word  $abab \in L(G)$ .
- 8. Define the intersection of two languages.
- 9. Let  $L_1 = \{x, xy, z\}$  and  $L_2 = \{y, yx\}$  be the finite languages, then find (i)  $L_1L_2$  (ii)  $L_2L_1$ .
- 10. Draw the state diagram for the non-deterministic finite state automaton  $M = (Q, I, \delta, q_0, F)$  where  $Q = \{q_0, q_1\}, I = \{0, 1\}, F = \{q_1\}$  and  $\delta$  is defined as follows:

| 1 42 4<br>20 | 0    | 1                                                                    |
|--------------|------|----------------------------------------------------------------------|
| 44           | {    |                                                                      |
| 31           | 59.J | $\left\{ \begin{array}{c} \epsilon \\ q 0, q 1 \end{array} \right\}$ |

#### **SECTION B**

## Answer any FIVE questions:

(5x8 = 40)

- 11. Construct a context free grammar for the language  $L = \{a^{2n}bc\}$ . Also show that the grammar constructed generates L.
- 12. Let  $L(G) = \{a^n b^n c^n / n \ge 1\}$ . Show that L(G) is accepted by the context sensitive grammar G = (N, T, P, S) where  $N = \{S, B\}, T = \{a, b, c\}, P$  consists of the following productions:  $S \rightarrow aSB, S \rightarrow abc, bB \rightarrow bbc, cB \rightarrow Bc$ .
- 13. Write a note on Chomskian hierarchy.
- 14. Let G be a grammar with  $S \rightarrow aSSa \mid b$ . For the strings *aabbaba* and *ababbaa* find (i) a left most derivation and (ii) a right most derivation
- 15. Define Kleene closure of a language. Prove that the families of Phrase structure language, Context sensitive language, Context free language and Regular language are closed under star.
- 16. Let  $L = \{a^n b^n / n \ge 1\}$ . Give an ambiguous and unambiguous grammar to generate L.
- 17. Let  $L = \{a^n b^m / n \neq m\}$  and G = (N, T, P, S) where  $N = \{S, A, B\}, T = \{a, b\}$  and  $P = \{S \rightarrow aSb, S \rightarrow aA, A \rightarrow aA, A \rightarrow a, S \rightarrow a, S \rightarrow bB, B \rightarrow bB, B \rightarrow b, S \rightarrow b\}$  generates *L*. Write this grammar in Chomsky normal form.
- 18. Construct a finite automaton that accepts exactly those input strings of 0's and 1's that end in 11.



### **SECTION C**

#### Answer any TWO questions:

19. (a) If G = (N, T, P, S) where  $N = \{S, A, B\}$ ,  $T = \{a, b\}$ , and P consists of the following rules:  $S \rightarrow aB$ ,  $S \rightarrow bA$ ,  $A \rightarrow a$ ,  $A \rightarrow aS$ ,  $A \rightarrow bAA$ ,  $B \rightarrow b$ ,  $B \rightarrow bS$ ,  $B \rightarrow aBB$ .

Then prove the following:

- S wiff w consists of an equal number of a's and b's
- A wiff w has one more a than it has b's.
- *B* w iff w has one more b than if has a's

(b) Find a regular grammar to generate  $L = (a, b)^*$  (15+5)

20. State and prove u - v theorem and illustrate it with an example.

21. (a) State and prove Chomsky normal form.

(b) Let  $L = \{wcw^R / w \in (a, b)^*\}$  and G = (N, T, P, S) where  $N = \{S\}, T = \{a, b, c\}$  and  $P = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow c\}$  generates L. Write this grammar in Chomsky normal form. (10+10)

- 22. (a) Define a deterministic finite automaton.
  - (b) Construct a DFA accepting all strings over  $\{0,1\}$  having even number of 0's and 1's.
  - (c) Draw the state diagram for the following non-deterministic finite state automaton,

 $M = (K, I, \delta, q_0, F)$  where  $K = \{q_0, q_1, q_2, q_3\}, I = \{0, 1\}, F = \{q_3\}, \delta$  is defined as follows:

| 6900           | 0                                                                                                                 | 1                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 8_<br>40       | $\left\{ \frac{1}{qq,q_1} \right\}$                                                                               | $\left\{ \frac{1}{q_0, q_2} \right\}$                                   |
| 40<br>41       | $\left\{ \begin{array}{c} \mathbf{c} & \mathbf{q}_1 \\ \mathbf{q}_2 \end{array} \right\}$                         | $\left\{\begin{matrix} a^0, a^2 \\ a^0, a^2 \end{matrix}\right\}$       |
|                | Φ                                                                                                                 | $\left\{ \begin{array}{c} & q_1 \\ & q_2 \\ & q_3 \end{array} \right\}$ |
| 22<br>22<br>23 | $\left\{ \begin{array}{c} \alpha_{\mathbf{p}} \\ \alpha \\ \alpha \\ \alpha \neq \mathbf{a} \end{array} \right\}$ | $\left\{ \begin{matrix} a \\ a \\ a \\ a \\ a \end{pmatrix} \right\}$   |

Check whether the string 11010011 is accepted by the non-deterministic finite automaton.

(3+7+10)

\*\*\*\*\*

(2x20 = 40)