LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2016
MT 5408-GRAPH THEORY

Date: 29-04-2016
Time: 01:00-04:00

Dept. No. \square Max. : 100 Marks

SECTION A

Answer ALL the questions:

1. Prove that every cubic graph has an even number of points.
2. Define a complete bipartite graph.
3. Give an example for an isomorphism between two graphs.
4. If $G_{1}=K_{2}$ and $G_{2}=C_{4}$ then find
(i) $G_{1} \cup G_{2}$ (ii) $G_{1}+G_{2}$
5. Define a tree with examples.
6. Prove that every Hamiltonian graph is 2-connected.
7. Define an eccentricity of a vertex v in a connected graph G.
8. Define the centre of a tree..
9. Is $K_{3,3}$ planar? If not justify your answer.

10 . Find the chromatic number for the following graph G.

SECTION B
Answer any FIVE questions:
11. (a) Let G be a k-regular bigraph with bipartition $\left(V_{1}, V_{2}\right)$ and $k>0$. Prove that $\left|V_{1}\right|=\left|V_{2}\right|$.
(b) Prove that $\delta \leq \frac{2 q}{p} \leq \Delta$.
12. (a) Prove that in any graph G, the number of points of odd degree is even.
(b) Prove that any self-complementary graph has $4 n$ or $4 n+1$ vertices.
13. If Let G_{1} be a $\left(p_{1}, q_{1}\right)$ graph and G_{2} be a (p_{2}, q_{2}) graph then prove that
(i) $G_{1}+G_{2}$ is a $\left(p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}\right)$ graph.
(ii) $G_{1} \times G_{2}$ is a ($p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}$) graph.
14. (a) In a graph, prove that any $u-v$ walk contains a $u-v$ path.
(b) Show that a closed walk of odd length contains a cycle.
15. (a) If a graph G is not connected then prove that the graph \bar{G} is connected.
(b) Prove that a graph G with p points and $\delta \geq \frac{p-1}{2}$ is connected.
16. If G is a graph with $p \geq 3$ vertices and $\delta \geq p / 2$, then prove that G is Hamiltonian.
17. State and prove the five-colour theorem.
18. Prove that K_{5} is non-planar.

SECTION C

Answer any TWO questions:

19. (a) Prove that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{p^{2}}{4}\right]$.
(b) Let G be a (p, q) graph then prove that $\Gamma(G)=\Gamma(\bar{G})$.
20. (a) Prove that a graph G with at least two points is bipartite if and only if all its cycles are of even length.
(b) Prove that every tree has a centre consisting of either one point or two adjacent points.
(15+5)
21. (a) Prove that the following statements are equivalent for a connected graph G
(i) G is eulerian.
(ii) Every point of G has even degree.
(iii) The set of edges of G can be partitioned into cycles.
(b) If G is Hamiltonian, prove that for every non-empty proper subset S of V, the number of components of $G \backslash S$, namely, $\omega(G \backslash S) \leq|S|$.
22. (a) Let G be a (p, q) graph then prove that the following statements are equivalent
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $p=q+1$.
(iv) G is acyclic and $p=q+1$.
(b) Prove that the following statements are equivalent for any graph G :
(i) G is 2-colourable.
(ii) G is bipartite.
(iii) Every cycle of G has even length.
