LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - APRIL 2016

MT 5408 - GRAPH THEORY

Date: 29-04-2016 Time: 01:00-04:00

SECTION A

(10x2 = 20)

Max.: 100 Marks

1. Prove that every cubic graph has an even number of points.

Dept. No.

- 2. Define a complete bipartite graph.
- 3. Give an example for an isomorphism between two graphs.
- 4. If $G_1 = K_2$ and $G_2 = C_4$ then find
 - (i) $G_1 G_2$ (ii) $G_1 + G_2$

Answer ALL the questions:

- 5. Define a tree with examples.
- 6. Prove that every Hamiltonian graph is 2-connected.
- 7. Define an eccentricity of a vertex v in a connected graph G.
- 8. Define the centre of a tree..
- 9. Is $K_{3,3}$ planar? If not justify your answer.
- 10. Find the chromatic number for the following graph G.

SECTION B

(5x8 = 40)
(5+3)
(4+4)
(4+4)
(4+4)

SECTION C

Answer any TWO questions:	(2x20 = 40)	
19. (a) Prove that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{p^2}{4}\right]$.		
(b) Let G be a (p,q) graph then prove that $\Gamma(G) = \Gamma(\overline{G})$.	(15+5)	
20. (a) Prove that a graph G with at least two points is bipartite if and only if all its(b) Prove that every tree has a centre consisting of either one point or two adjacents	•	
(b) The that every live has a centre consisting of entire one point of two adju	(15+5)	
21. (a) Prove that the following statements are equivalent for a connected graph G(i) G is eulerian.		
(ii) Every point of G has even degree.		
 (iii) The set of edges of G can be partitioned into cycles. (b) If G is Hamiltonian, prove that for every non-empty proper subset S of V, the of G \ S, namely, ω(G \ S) ≤ S . 	he number of components (15+5)	
22. (a) Let G be a (p, q) graph then prove that the following statements are equivalent	llent	
(i) G is a tree. (ii) Every two points of C are isoladed by a unique path		
(ii) Every two points of G are joined by a unique path. (iii) G is connected and $p = q + 1$.		
(iv) G is acyclic and $p = q + 1$.		
(b) Prove that the following statements are equivalent for any graph G :		
(i) G is 2-colourable.		
(ii) G is bipartite.	(12+0)	
(iii) Every cycle of G has even length.	(12+8)	
