LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - APRIL 2016

MT 5505 - REAL ANALYSIS

Date: 26-04-2016 Time: 09:00-12:00

Answer ALL questions

SECTION – A

 $(10 \times 2 = 20 \text{ marks})$

Max.: 100 Marks

- 1. Show that the sets Z and N are similar.
- 2. Differentiate between countable and uncountable sets.
- 3. Define discrete metric space.
- 4. Give an example of a compact set in the real space R.
- 5. Show that every convergent sequence is a Cauchy sequence in R.
- 6. Give an example of a continuous function which is not uniformly continuous.

Dept. No.

- 7. When do you say that a function $f : [a,b] \rightarrow R$ has a right hand derivative at c in [a,b]?
- 8. When is a sequence $\{a_n\}$ said to be monotonic increasing or decreasing?
- 9. Define limit superior and limit inferior of a sequence.
- 10. Give an example of a function which is not Riemann integrable.

<u>SECTION – B</u>

Answer any FIVE questions.

- 11. If n ε N and n is not the square of any integer, show that \overline{n} is irrational.
- 12. Show that the set R is uncountable.
- 13. Show that a subset E of a metric space (X,d) is closed in X if and only if it contains all its adherent points.
- 14. Show that composition of continuous functions is continuous.
- 15. If f and g are continuous functions at x_0 show that f+g and fg are also continuous at x_0 .
- 16. State and prove Rolle's Theorem.
- 17. Show that a function f of bounded variation on [a,b] is bounded on [a,b].
- 18. Suppose $f \in R(\alpha)$ on [a, b]. Show that $\alpha \in R(f)$ on [a, b] and $\int_{a}^{b} \frac{b}{fd\alpha} + \int_{a}^{b} \alpha df = f(b)\alpha(b) f(a)\alpha(a)$.

 $(5 \times 8 = 40 \text{ marks})$

SECTION – C

Answer any TWO questions

 $(2 \times 20 = 40 \text{ marks})$

19. (a) If $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$, show that e is irrational.

(b) State and prove Cauchy- Schwarz inequality.

- 20. (a) If E is a subset of a metric space X, show that \overline{E} is the smallest closed set containing E.
 - (b) Show that the Euclidean space \mathbf{R}^k is complete.
- 21. (a) Show that a map $f:X \rightarrow Y$ is continuous on X if and only if $f^{1}(G)$ is open in X for every open set G in Y.
 - (b) Let X be a compact metric space, Y be a metric space and f:X→Y be continuous on X. Show that f is uniformly continuous.
- 22. (a) State and prove Generalized Mean Value theorem and hence deduce Lagrange Mean Value theorem.
 - (b) Suppose $f \in R(\alpha)$ on $[a,b], \alpha$ is differentiable on [a,b] and α' is continuous on [a,b]. Show that the Riemann integral $\int_{a}^{b} f \alpha' dx$ exists and $\int_{a}^{b} f dx = \int_{a}^{b} f \alpha' dx$.

\$\$\$\$\$\$\$