## M.Sc. DEGREE EXAMINATION - CHEMISTRY

FIRST SEMESTER - APRIL 2016

## CH 1808 / 5508-QUANTUM CHEMISTRY \& GROUP THEORY

Date: 06-05-2016
Dept. No. $\square$ Max. : 100 Marks
Time: 01:00-04:00

## Part A

Answer ALL questions:
$(10 \times 2=20)$

1. If $V$ is a vector over a field $F$, Show that $(-a) v=a(-v)=-(a v)$, for $a \in F, v \in V$.
2. Give an example of a linearly dependent set of vectors in $R^{2}$ over $R$.
3. Define homomorphism of a vector space into itself.
4. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$.
5. If $V$ is an inner product space show that $\langle v, a u+b w\rangle=a\langle v, u\rangle+b\langle v, w\rangle$ where $a$ and $b$ are scalars.
6. Define an orthonormal set.
7. Prove that $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
8. Define nilpotent and idempotent matrices.
9. Define Hermitian and skew-Hermitian matrices.
10. Find the rank of the matrix $A=\left(\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right)$ over field of rational numbers.

## Part B

## Answer any FIVE questions:

11. Let $V$ be a vector space of dimension $n$ and $u_{1}, u_{2}, u_{3}, \ldots u_{r}$ be linearly independent vectors in $V$. Show that there exists $n-r$ new vectors $v_{r+1}, v_{r+2}, \ldots . . v_{n}$ in $V$ such that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V$.
12. If $V$ is a vector space of finite dimension that is the direct sum of its subspace $U$ and $W$ show that $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W$.
13. State and prove triangular inequality.
14. If $V$ is a vector space of finite dimension and $W$ is a subspace of $V$, then prove that $\operatorname{dim} V / W=\operatorname{dim} V-$ $\operatorname{dim} W$.
15. Show the $T \epsilon A(V)$ is invertible if and only if the constant term of the minimal polynomial for $T$ is not zero.
16. If $T \in A(V)$ and $\lambda \in F$, then prove that $\lambda$ is an eigen value of $T$ it and only if $[\lambda I-T]$ is singular.
17. Check the consistency of the following set of equations:
$x_{1}+2 x_{2}+x_{3}+11,4 x_{1}+6 x_{2}+5 x_{3}=8,2 x_{1}+2 x_{2}+3 x_{3}=19$.
18. If $\langle T(v), T(v)\rangle=\langle v, v\rangle$ for all $v \in V$, show that $T$ is unitary.

## Part C

## Answer any TWO questions:

$(2 \times 20=40)$
19. a) Prove that the vector space $V$ over $F$ is a direct sum of two of its subspaces $W_{1}$ and $W_{2}$ if and only if $V$ $=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$.
b) Let $V$ be a vector space of finite dimension and let $W_{1}$ and $W_{2}$ be subspaces of $V$ such that $V=W_{1}+W_{2}$ and $\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$. Then prove that $V=W_{1} \oplus W_{2}$.
(10+10)
20. If $U$ and $V$ are vector spaces of dimension $m$ and $n$ respectively over $F$, then prove that the vector space $\operatorname{Hom}(U, V)$ is of dimension $m n$.
21. Apply Gram Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of $R^{4}$ generated by the vectors. $(1,1,0,1),(1,-2,0,0),(1,0,-1,-2)$.
22. a) Find the rank of $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 3 & 5\end{array}\right]$.
b) If $T \epsilon A(V)$ show that $T^{*} \epsilon A(V)$ and show that
(i) $(S+T)^{*}=S^{*}+T^{*}$
(ii) $(S T)^{*}=T^{*} S^{*}$
(iii) $(\lambda T)^{*}=\lambda T^{*}$
(iv) $\left(T^{*}\right)^{*}=T$.

## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

## B.A. DEGREE EXAMINATION - ECONOMICS

SECOND SEMESTER - APRIL 2016
LH 2084 / 5508-ADVANCED HINDI - II

Date: 15-04-2016
Dept. No. $\square$ Max. : 100 Marks
Time: 01:00-04:00

## Part A

Answer ALL questions:
( $10 \times 2=20$ )
23. If $V$ is a vector over a field $F$, Show that $(-a) v=a(-v)=-(a v)$, for $a \in F, v \in V$.
24. Give an example of a linearly dependent set of vectors in $R^{2}$ over $R$.
25. Define homomorphism of a vector space into itself.
26. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$.
27. If $V$ is an inner product space show that $\langle v, a u+b w\rangle=a\langle v, u\rangle+b\langle v, w\rangle$ where $a$ and $b$ are scalars.
28. Define an orthonormal set.
29. Prove that $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
30. Define nilpotent and idempotent matrices.
31. Define Hermitian and skew-Hermitian matrices.
32. Find the rank of the matrix $A=\left(\begin{array}{ccc}1 & 5 & -7 \\ 2 & 3 & 1\end{array}\right)$ over field of rational numbers.

## Part B

## Answer any FIVE questions:

33. Let $V$ be a vector space of dimension $n$ and $u_{1}, u_{2}, u_{3}, \ldots u_{r}$ be linearly independent vectors in $V$. Show that there exists $n-r$ new vectors $v_{r+1}, v_{r+2}, \ldots . v_{n}$ in $V$ such that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of $V$.
34. If $V$ is a vector space of finite dimension that is the direct sum of its subspace $U$ and $W$ show that $\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim} W$.
35. State and prove triangular inequality.
36. If $V$ is a vector space of finite dimension and $W$ is a subspace of $V$, then prove that $\operatorname{dim} V / W=\operatorname{dim} V-$ $\operatorname{dim} W$.
37. Show the $T \epsilon A(V)$ is invertible if and only if the constant term of the minimal polynomial for $T$ is not zero.
38. If $T \in A(V)$ and $\lambda \in F$, then prove that $\lambda$ is an eigen value of $T$ it and only if $[\lambda I-T]$ is singular.
39. Check the consistency of the following set of equations:
$x_{1}+2 x_{2}+x_{3}+11,4 x_{1}+6 x_{2}+5 x_{3}=8,2 x_{1}+2 x_{2}+3 x_{3}=19$.
40. If $\langle T(v), T(v)\rangle=\langle v, v\rangle$ for all $v \in V$, show that $T$ is unitary.

## Part C

## Answer any TWO questions:

$(2 \times 20=40)$
41. a) Prove that the vector space $V$ over $F$ is a direct sum of two of its subspaces $W_{1}$ and $W_{2}$ if and only if $V$ $=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{0\}$.
b) Let $V$ be a vector space of finite dimension and let $W_{1}$ and $W_{2}$ be subspaces of $V$ such that $V=W_{1}+W_{2}$ and $\operatorname{dim} V=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$. Then prove that $V=W_{1} \oplus W_{2}$.
(10+10)
42. If $U$ and $V$ are vector spaces of dimension $m$ and $n$ respectively over $F$, then prove that the vector space $\operatorname{Hom}(U, V)$ is of dimension $m n$.
43. Apply Gram Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of $R^{4}$ generated by the vectors. $(1,1,0,1),(1,-2,0,0),(1,0,-1,-2)$.
44. a) Find the rank of $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 3 & 5\end{array}\right]$.
b) If $T \epsilon A(V)$ show that $T^{*} \epsilon A(V)$ and show that
(v) $(S+T)^{*}=S^{*}+T^{*}$
(vi) $(S T)^{*}=T^{*} S^{*}$
(vii)
$(\lambda T)^{*}=\lambda T^{*}$
(viii) $\quad\left(T^{*}\right)^{*}=T$.

