LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2016
MT 5509 - ALGEBRAIC STRUCTURE - II

Date: 29-04-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

ANSWER ALL QUESTIONS
$(10 \times 2=20)$

1. If V is a vector space over a field F, show that $(-a) v=a(-v)=-(a v)$ for a $\epsilon F, v \in V$.
2. Given that V is a vector space over a field F, prove that if v not equal to 0 then $a v=0$ implies $a=0$.
3. Define a basis of a vector space.
4. Define homomorphism of a vector space into itself.
5. Define inner product space.
6. Define orthonormal set.
7. Define skew symmetric matrix and give an example.
8. If A and B are Hermitian, show that $A B-B A$ is skew Hermitian.
9. Define similar matrices.
10. Define adjoint of a linear transformation.

PART - B

ANSWER ANY FIVE QUESTIONS.
11. Let F be an arbitrary field and n a positive integer. Show that the set of all ordered n - tuples over F is a vector space.
12. Prove that the union of two subspaces of a vector space V over F is a subspace of V if and only if one is contained in the other.
13. If V is a vector space of dimension n and U is a subspace of V, then U has finite dimension and $\operatorname{dim} U$ is less than or equal to n. Moreover, $U=V$ if and only if $\operatorname{dim} U=n$.
14. A linear transformation over a vector space V is singular if and only if there exists a non zero element v in V such that $T(v)=0$.
15. Prove that the regular elements of $A(V)$ form a group under multiplication.
16. Show that any square matrix A can be expressed uniquely as the sum of a symmetric and skew symmetric matrix.
17. Find the rank of the matrix $A=\left(\begin{array}{cccccc}0 & -1 & 3 & -1 & 0 & 2 \\ -1 & 1 & -2 & -2 & 1 & -3 \\ 2 & -1 & 4 & 4 & -1 & 8 \\ 1 & -2 & 5 & 1 & -1 & 5\end{array}\right)$ over the field of rational numbers.

$$
x_{1}+x_{2}+x_{3}=1,
$$

18. For what values λ of is the system of equations $x_{1}+2 x_{2}+4 x_{3}=\lambda$, over the rational field

$$
x_{1}+4 x_{2}+10 x_{3}=\lambda^{2}
$$

19. Prove that a vector space V over a field F is a direct sum of two of its subspaces W_{1} and W_{2} if and only if $V=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=(0)$.
20. State and prove the fundamental homomorphism theorem for vector spaces.
21. If V is a finite - dimensional inner product space and W is a subspace of V, then prove that V is the direct sum of W and its orthogonal complement.
22. Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.
\$\$\$\$\$\$
