LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2016
MT 6603/MT 6600 - COMPLEX ANALYSIS
[UPTO 11-BATCH]
Date: 15-04-2016
Time: 09:00-12:00
\square Max. : 100 Marks

$\underline{\text { PART - A }}$

Answer ALL questions:

1. Verify Cauchy-Riemann equations for the function: $f(z)=z^{3}$.
2. Show that $u=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic.
3. Find the radius of convergence of the series $\frac{1}{2} z+\frac{1.3}{2.5} z^{2}+\frac{1.3 .5}{2.5 .8} z^{2}+\ldots$.
4. Using Cauchy's integral formula, evaluate $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+2 z+6}{z-1}$ where C is the circle $|z|=3$.
5. Locate and classify the isolated singularities of $f(z)=\frac{e^{z}-1}{z}$.
6. Define monomorphic function with an example.
7. Find the residue of $f(z)=\frac{z e^{z}}{(z-1)^{3}}$ at its poles.
8. State Argument theorem.
9. Define conformal mapping and give an example.
10. Find the fixed points of $f(z)=\frac{z+1}{z-1}$.

PART - B

Answer any FIVE questions:
11. Show that $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ for any two complex numbers z_{1}, z_{2}. When is the inequality sharp?
12. Show that $u=e^{x} \cos y$ is harmonic and find its harmonic conjugate.
13. State and prove Liouvillie's theorem.
14. Compute $\int_{|z|=1} \frac{e^{z}}{z^{3}} d z$.
15. Find the Laurent series expansion of $f(z)=\frac{-1}{(z-1)(z-2)}$ valid in the regions \quad (i) $1<|z|<2$
(ii) $0<|z-1|<1$.
16. Classify the singularities of the function $f(z)=\frac{z^{2}-5 z+6}{(z-2)(z+5)}$ and find the residue of $f(z)$ at $\mathrm{z}=-5$.
17. State and prove residue theorem.
18. Find the bilinear transformation which maps the points $\mathrm{z}=-2,0,2$ into the points $\mathrm{w}=0, i,-i$ respectively.

PART - C

Answer any TWO questions
19. a) Derive Cauchy - Riemann equations for an analytic function $f(z)=u(x, y)+i v(x, y)$.
b) Prove that an analytic function with constant modulus must reduce to a constant.
20. a) State and prove fundamental theorem of algebra.
b) State and prove Morera's theorem.
21. a) State and prove Laurent's theorem.
b) Show that $\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta}=\frac{\pi}{\sqrt{a^{2}-1}},(a>1)$.
22. a) State and prove Rouche's theorem.
b) Prove that the totality of bilinear transformations which map $|z|=1$ onto $|w|=1$ must be of the form $w=k \frac{z-\alpha}{\bar{\alpha} z-1}$ where α is any complex number and $|k|=1$.

