LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

Date: 21-04-2016
Time: 09:00-12:00

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2016
MT 6605 - NUMERICAL METHODS

Dept. No. \square Max. : 100 Marks

$\underline{\text { PART - A }}$

Answer ALL questions:

1. What is the condition for convergence of solving $\mathrm{AX}=\mathrm{b}$ by indirect methods?
2. Explain Cramer's rule.
3. Which method is called method of chords?
4. Write the Newton-Raphson formula for \sqrt{N}, where N is a positive integer.
5. Define interpolation.
6. Write the relation between divided differences and forward differences.
7. Write the range values of p so that the Stirling's formula gives good estimate.
8. Write the Laplace-Everett's formula.
9. Write Simpson's $\frac{3}{8}$ rule for numerical integration.
10. Write the formula for Range-kutta method of second order.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
11. Solve the following system of equations by Gauss elimination method $10 x+y+z=12,2 x+10 y+z=13,2 x+2 y+10 z=14$.
12. Derive the condition for convergence of Newton Raphson method.
13. Find the approximate value of the real root of $x \log _{10} x=1.2$ by regula-falsi method.
14. Write a C program to interpolate Newton's forward interpolation formula.
15. Find a cubic polynomial which takes the following set of values $(0,1),(1,2),(2,1)$ and $(3,10)$.
16. Using Everett's formula find $f(1.15)$ given that $f(1)=1, f(1.10)=1.049$, $f(1.20)=1.096, f(1.30)=1.140$.
17. Find the value of $\log 2^{\frac{1}{3}}$ from $\int_{0}^{1} \frac{x^{2} d x}{1+x^{3}}$ using Simpson's $\frac{1}{3}$ rule with $\lambda=0.25$.
18. Given $y^{1}+y-x^{2}=0, y(0)=1, \mathrm{y}(0.1)=0.9052, \mathrm{y}(0.2)=0.8213$ find correct to four decimal places $\mathrm{y}(0.3)$ using modified Euler's method.

PART - C

Answer any TWO questions:
($2 \times 20=40$ marks $)$
19. a) Using Gauss-Seidel iterative method, solve the system of equations.

$$
10 x-2 y-z-w=3,-x-y+10 z-2 w=27,-2 x+10 y-z-w=15,-x-y-2 z+10 w=-9 .
$$

b) Solve $\sin x=1+x^{3}$ using Newon-Raphson method, perform upto four iterations.
20. a) Find a polynomial satisfied by the following table:

$x:$	-4	-1	0	2	5
$F(x):$	1245	33	5	9	1335

b) Using Gauss's backward formula find $\sin 45^{\circ}$ from the following:

$$
\begin{align*}
& \sin \left(20^{\circ}\right)=0.34202, \sin \left(30^{\circ}\right)=0.502, \sin \left(40^{\circ}\right)=0.64279, \sin \left(50^{\circ}\right)=0.76604, \\
& \sin \left(60^{\circ}\right)=0.86603, \sin \left(70^{\circ}\right)=0.93969 . \tag{12+8}
\end{align*}
$$

21. a) The population of a certain town is shown in the following table.

Year:	1951	1961	1971	1981	1991
Population: (in thousands)	19.96	36.65	58.81	77.21	94.61

Find the rate of growth of the population in the year 1981.
b) Write a C program to find the value of $\int_{a}^{b} f(x) d x$ using simpson's $\frac{1}{3}$ rule.
22. Using Range-kutta method of fourth order, solve for y at $x=1.2,1.4$ from $\left(x^{2}+x e^{x}\right) y^{1}-e^{x}=2 x y$ with $x_{0}=1, y_{0}=0$.

\$\$\$\$\$\$

