LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
M.Sc. DEGREE EXAMINATION - MATHEMATICS	
SECOND SEMESTER - APRIL 2017	
16PMT2MC01/MT 2810 - ALGEBRA	
Date : 19-04-2017 Dept. No. Max. : 100 Mark Time : 01:00-04:00	S
Answer ALL the questions	
1. a) If G is a finite group, then prove that $C_a = \frac{O(G)}{O(N(a))}$. In other words, show that the num	nber
of elements conjugate to 'a' in G is the index of the normalizes of 'a' in G.	(5)
(OK) b) If p is a prime number and p divides $O(G)$ then G has an element of order p.	(5)
c) If p is a prime number and p^{α} divides O(G) then G has a subgroup of order p^{α} .	
(OR)	(15)
d) Prove that any group of order 11^2 . 13^2 is abelian and a group of order 72 is not a simple group.	
2. a) Given two polynomials $f(x)$, $g(x) \neq 0$ in $F[x]$ then there exists two polynomials $t(x)$, $r F[x]$ such that $f(x) = t(x)g(x) \neq x(x)$ where $r(x) = 0$ (or) deg $r(x) < \deg g(x)$. (OR)	(x) in (5)
b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x)g(x)$ is also a primitive polynomials	nal.
c) (i) Prove x^2+1 is irreducible over the integers module 7. (ii) If $f(x)$ and $g(x)$ are two nonzero polynomials then deg(f(x)g(x)) = deg f(x) + deg g(x). (8) (OR)	(7)
d) State and Drove Eigenstein Criterian	
e) State and prove Eisenstein Chierton. e) State and prove Gauss Lemma.	(8) (7)
3. a) If L is a finite extension of K and K is a finite extension of F then prove that L is a finite extension of F.	te
(OR)	(5)
b) If $p(x)$ is a polynomial in $F[x]$ of degree $n \ge 1$ and is irreducible over F, then prove that there is an extension of E of F such that $[E:F] = n$ in which $p(x)$ has a root.	t
c) Prove that the element $a \in K$ is algebraic over F iff F(a) is a finite extension of F.	(15)

(**OR**) d) i) If $a, b \in K$ are algebraic over F then show that $a \pm b$, ab and a/b ($b \neq o$) are algebraic over F. (8) (ii) If F is of characteristic 0 and a, b are algebraic over F, then show that there exists an element $c \in F(a, b)$ such that F(a, b) = F(c). (7) 4. a) Prove that K is the normal extension of F iff K is the splitting field of some polynomial over F. (5) (**OR**) b) Prove that S_n is not solvable for $n \ge 5$. c) State and prove the fundamental theorem of Galois Theory. (**OR**) (15) d) Let K be the normal extension of F and $H \subseteq G(K, F)$, $K_H = \{x \in K / \sigma(x) = x \forall \sigma \in H\}$ is the fixed field of the H then prove that (i) $[K:K_{H}] = O(H)$ (ii) $H = G(K, K_{H})$. In particular, H = G(K, F) and [K : F] = O(G(K, F)). 5. a) For every prime number p and for every positive integer m, prove that there is a unique field having p^m elements. (**OR**) (5) b) Let G be a finite abelian group such that the relation $x^n = (e)$ is satisfied by at most n elements of G for every positive integer n then prove that G is a cyclic group. (c) State and prove Wedderburn's Theorem. (15) (**OR**) (d) (i) Let Q be the field of rationals then show that $Q(\sqrt{2},\sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$. (8)

(ii) Let $f(x) = x^2 + 3$ and $g(x) = x^2 + x + 1$ be polynomials over Q. Prove that their splitting

(7)

fields are equal and find its degree over Q.

\$\$\$\$\$\$\$\$