1. a) If G is a finite group, then prove that $\mathrm{C}_{\mathrm{a}}=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{N}(\mathrm{a}))}$. In other words, show that the number of elements conjugate to ' a ' in G is the index of the normalizes of ' a ' in G. (OR)
b) If p is a prime number and p divides $O(G)$ then Ghas an element of order p.
c) If p is a prime number and p^{α} divides $\mathrm{O}(\mathrm{G})$ then Ghas a subgroup of order p^{α}.
(OR)
d) Prove that any group of order $11^{2} .13^{2}$ is abelian and a group of order 72 is not a simple group.
2. a) Given two polynomials $f(x), g(x) \neq 0$ in $\mathrm{F}[\mathrm{x}]$ then there exists two polynomials $\mathrm{t}(\mathrm{x}), \mathrm{r}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$ such that $f(x)=t(x) g(x) \forall(x)$ where $r(x)=0$ (or) $\operatorname{deg} r(x)<\operatorname{deg} g(x)$.
(OR)
b) If $f(x)$ and $g(x)$ are primitive polynomials then $f(x) g(x)$ is also a primitive polynomial.
c) (i) Prove $x^{2}+1$ is irreducible over the integers module 7.
(ii) If $f(x)$ and $g(x)$ are two nonzero polynomials then
$\operatorname{deg}(f(x) g(x))=\operatorname{deg} f(x)+\operatorname{deg} g(x)$. (8)
(OR)
d) State and Prove Eisenstein Criterion.
e) State and prove Gauss Lemma.
3. a) If L is a finite extension of K and K is a finite extension of F then prove that L is a finite extension of F .
(OR)
b) If $p(x)$ is a polynomial in $\mathrm{F}[x]$ of degree $\mathrm{n} \geq 1$ and is irreducible over F , then prove that there is an extension of E of F such that $[\mathrm{E}: \mathrm{F}]=\mathrm{n}$ in which $p(x)$ has a root.
c) Prove that the element $\mathrm{a} \in \mathrm{K}$ is algebraic over F iff $\mathrm{F}(\mathrm{a})$ is a finite extension of F .
d) i) If $a, b \in K$ are algebraic over F then show that $a \pm b, a b$ and $a / b(b \neq 0)$ are algebraic over F. (8)
(ii) If F is of characteristic 0 and a, b are algebraic over F, then show that there exists an element $\mathrm{c} \in \mathrm{F}(\mathrm{a}, \mathrm{b})$ such that $\mathrm{F}(\mathrm{a}, \mathrm{b})=\mathrm{F}(\mathrm{c})$.
4. a) Prove that K is the normal extension of F iff K is the splitting field of some polynomial over F.
(OR)
b) Prove that S_{n} is not solvable for $n \geq 5$.
c) State and prove the fundamental theorem of Galois Theory.
(OR)
d) Let K be the normal extension of F and $\mathrm{H} \subseteq \mathrm{G}(\mathrm{K}, \mathrm{F}), \mathrm{K}_{\mathrm{H}}=\{\mathrm{x} \in \mathrm{K} / \sigma(\mathrm{x})=\mathrm{x} \forall \sigma \in \mathrm{H}\}$ is the fixed field of the Hthen prove that
(i) $\left[\mathrm{K}: \mathrm{K}_{\mathrm{H}}\right]=\mathrm{O}(\mathrm{H})$
(ii) $\mathrm{H}=\mathrm{G}\left(\mathrm{K}, \mathrm{K}_{\mathrm{H}}\right)$.

In particular, $\mathrm{H}=\mathrm{G}(\mathrm{K}, \mathrm{F})$ and $[\mathrm{K}: \mathrm{F}]=\mathrm{O}(\mathrm{G}(\mathrm{K}, \mathrm{F}))$.
5. a) For every prime number p and for every positive integer m, prove that there is a unique field having p^{m} elements.

(OR)

b) Let Gbe a finite abelian group such that the relation $x^{n}=(e)$ is satisfied by atmost n elements of G for every positive integer n then prove that Gis a cyclic group.
(c) State and prove Wedderburn's Theorem.
(OR)
(d) (i) Let Q be the field of rationals then show that $\mathrm{Q}(\sqrt{2}, \sqrt{3})=\mathrm{Q}(\sqrt{2}+\sqrt{3})$.
(ii) Let $f(x)=x^{2}+3$ and $g(x)=x^{2}+x+1$ be polynomials over Q . Prove that their splitting fields are equal and find its degree over Q.

\$\$\$\$\$\$\$

