Date: 21-04-2017 01:00-04:00

Dept. No.

Max. : 100 Marks

Answer all questions. Each question carries $\mathbf{2 0}$ marks.

1. (a) Find the partial differential equation of the family of planes whose sum of x, y, z intercepts is equal to unity.
(OR)
(b) Find the general integral of the linear $\operatorname{PDE}(y+z x) p-(x+y z) q=x^{2}-y^{2}$.
(c) Show that the following PDE's $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and hence find their solution.
(OR)
(d) (i) Find the characteristics of the equation $p q=z$ and hence determine the integral surface which passes through the parabola $x=0, y^{2}=z$.
(ii) Find the complete integral of $\left(p^{2}+q^{2}\right) y=q z$ using Charpit's method.
2. (a) Reduce the equation $x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}=e^{x}$ to a canonical form.
(OR)
(b) Derive the canonical forms for second order PDE.
(c) Explain the Riemann's method for solving $L(u)=F(x, y)$.
(d) Solve the equation $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$.
3. (a) Obtain the solutions of Laplace equation in cylindrical coordinates.
(b) Derive the Poisson equation $\nabla^{2} V=-4 \pi G \rho$.
(c) Find the solution for Neumann's problemfor a rectangle.
(d) Solve the interior Dirichlet's problem for a circle.
4. (a) Define boundary conditions and its various types.
(OR)
(b) Derive the periodic solution of one-dimensional wave equation in spherical polar coordinates.
(c) Find the solution of vibrating string problemunder variables separable method.
(d) In an one- dimensional infinite solid, $\rightarrow \infty<x<\infty$, the surface $a<x<b$, is initially maintained at temperature T_{0} and at zero temperature everywhere outside the surface. Show that $T(x, t)=$ $\frac{T_{0}}{2}\left[\operatorname{erf}\left(\frac{b-x}{\sqrt{4 a t}}\right)-\operatorname{erf}\left(\frac{a-x}{\sqrt{4 a t}}\right)\right]$.
5. (a) Explain briefly the eigen function method.
(OR)
(b) Show that the Green's function has the symmetry property.
(c) State and prove Helmholtz theorem.
(d) Solve the initial boundary value problem using the Laplace transform technique $P D E ; u_{t}=\alpha u_{x x}, \quad 0<x<1, t>0$
$B C s ; u(0, t)=1, u(1, t)=1, t>0$ and IC; $u(x, 0)=1+\sin \pi x, 0<x<1$.
