LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER – APRIL 2017

16PMT2MC03- PARTIAL DIFFERENTIAL EQUATIONS

Date: 21-04-2017 01:00-04:00 Dept. No.

Max.: 100 Marks

Answer all questions. Each question carries 20 marks.

1.	(a) Find the partial differential equation of the family of planes whose sum of <i>x</i> , <i>y</i> to unity.	<i>v, z</i> intercepts is equal (5)
	(b) Find the general integral of the linear PDE $(y+zx)p - (x+yz)q = x^2 - y^2$.	(5)
	(c) Show that the following PDE's $xp - yq = x$ and $x^2p + q = xz$ are compatible solution.	e and hence find their (15)
	 (d) (i) Find the characteristics of the equation pq = z and hence determine the i passes through the parabola x = 0, y² = z. (ii) Find the correlate integral of (m² + q²) u = qz using Charait's method 	ntegral surface which (10)
	(ii) Find the complete integral of $(p^2 + q^2)y = qz$ using Charpit's method.	(3)
2.	(a) Reduce the equation $x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} = e^x$ to a canonical form.	(5)
	(b) Derive the canonical forms for second order PDE.	(5)
	(c) Explain the Riemann's method for solving $L(u) = F(x, y)$.	(15)
	(d) Solve the equation $u_{xx} - 2sinxu_{xy} - cos^2 xu_{yy} - cosxu_y = 0.$	(15)
3.	(a) Obtain the solutions of Laplace equation in cylindrical coordinates.	(5)
	(b) Derive the Poisson equation $\nabla^2 V = -4\pi G\rho$.	(5)
	(c) Find the solution for Neumann's problem for a rectangle.	(15)
	(d) Solve the interior Dirichlet's problem for a circle.	(15)
4.	(a) Define boundary conditions and its various types.	(5)
	(OR) (b) Derive the periodic solution of one-dimensional wave equation in spherical polar coordinates. (5)	
	(c) Find the solution of vibrating string problem under variables separable method.	(15)
	(d) In an one- dimensional infinite solid, $-\infty < x < \infty$, the surface $a < x < b$, is temperature T_0 and at zero temperature everywhere outside the surface. $\frac{T_0}{2} \left[erf\left(\frac{b-x}{\sqrt{4\alpha t}}\right) - erf\left(\frac{a-x}{\sqrt{4\alpha t}}\right) \right].$	initially maintained at Show that $T(x, t) =$ (15)
5.	(a) Explain briefly the eigen function method.	(5)

(b) Show that the Green's function has the symmetry property.	(5)
(c) State and prove Helmholtz theorem.	(15)
(OR) (d) Solve the initial boundary value problem using the Laplace transform technique	
<i>PDE</i> ; $u_t = \alpha u_{xx}$, $0 < x < 1, t > 0$ <i>BCs</i> ; $u(0,t) = 1, u(1,t) = 1, t > 0$ and IC; $u(x,0) = 1 + sin\pi x, 0 < x < 1$.	(15)
	(13)

\$\$\$\$\$\$\$\$