LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2017

16PMT2MC03- PARTIAL DIFFERENTIAL EQUATIONS

	ate: 21-04-2017 :00-04:00	Dept. No.	Max.: 100 Marks
	Answer all question	ons. Each question carries 20 mar	ks.
1.	(a) Find the partial different to unity.		planes whose sum of x , y , z intercepts is equal (5)
	(b) Find the general int	egral of the linear PDE $(y + zx)p$	$-(x+yz)q = x^2 - y^2. $ (5)
	(c) Show that the follo solution.	(27)	p + q = xz are compatible and hence find their (15)
	passes through t	(OR) eteristics of the equation $pq = z$ at the parabola $x = 0$, $y^2 = z$. ete integral of $(p^2 + q^2)y = qz$ usi	nd hence determine the integral surface which (10) ing Charpit's method. (5)
2.	(a) Reduce the equation	$\int dx^2 u_{xx} - 2xy u_{xy} + y^2 u_{yy} = e^x$	to a canonical form. (5)
	(b) Derive the canonica	al forms for second order PDE.	(5)
	(c) Explain the Rieman	nn's method for solving $L(u) = F(u)$	(x,y). (15)
	(d) Solve the equation a	$u_{xx} - 2sinxu_{xy} - cos^2 x u_{yy} - cos^2 x u_{yy}$	$psxu_y = 0. (15)$
3.	(a) Obtain the solutions	s of Laplace equation in cylindrical	l coordinates. (5)
	(b) Derive the Poisson	equation $\nabla^2 V = -4\pi G \rho$.	(5)
	(c) Find the solution fo	or Neumann's problem for a rectang	gle. (15)
	(d) Solve the interior D	(OR) Dirichlet's problem for a circle.	(15)
4.	(a) Define boundary co	onditions and its various types.	(5)
	(OR) (b) Derive the periodic solution of one-dimensional wave equation in spherical polar coordinates. (5)		
	(c) Find the solution of	vibrating string problem under var (OR)	riables separable method. (15)
		onal infinite solid, , $-\infty < x < \infty$, to distribute the at zero temperature everywhe	the surface $a < x < b$, is initially maintained at the outside the surface. Show that $T(x, t) = (15)$
5.	(a) Explain briefly the	eigen function method.	(5)

(b) Show that the Green's function has the symmetry property.

(5)

(c) State and prove Helmholtz theorem.

(15)

(OR)
(d) Solve the initial boundary value problem using the Laplace transform technique

PDE;
$$u_t = \alpha u_{xx}$$
, $0 < x < 1, t > 0$
BCs; $u(0,t) = 1, u(1,t) = 1, t > 0$ and IC; $u(x,0) = 1 + sin\pi x, 0 < x < 1$. (15)

\$\$\$\$\$\$\$\$