LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER – APRIL 2017

16UMT1MC01- ALGEBRA AND CALCULUS - I

Date: 19-04-2017 09:00-12:00 Dept. No.

Max.: 100 Marks

PART-A

Answer ALL questions

(10 X 2 = 20)

(5 X8 = 40)

- 1. Find the n^{th} derivative of $y = \sin ax$.
- 2. Find the subnormal of the parabola $y^2 = 4ax$.
- 3. State the conditions for maxima and minima of two variables.
- 4. Write the steps used in Lagrange's method of undetermined multipliers.
- 5. Write the p-r equation of a curve.
- 6. Define an asymptote to a curve.
- 7. If α , β , γ are the roots of the equation $x^3 9x^2 + 108 = 0$, Find the value of $\sum \alpha^2$
- 8. Form the quadratic equation one of whose roots is $\sqrt{5} 1$.
- 9. How many real root are there in the equation $x^5 6x^2 4x + 5 = 0$?
- 10. What is the condition for the roots of equation $x^3 + px^2 + qx + r = 0$ to be in harmonic progression.

PART-B

Answer any FIVE questions

- 11. If $y = \sin^{-1} x$, Prove that $(1-x^2)y_2 xy_1 = 0$ and $(1-x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$.
- 12. Find the slope of the tangent with the initial line for the cardioid

$$r = a(1 - \cos\theta)$$
 at $\theta = \frac{\pi}{6}$

- 13. Find the minimum values of $2(x^2 y^2) x^4 + y^4$.
- 14. Find the radius of curvature at 't' on the curve $x = 6t^2 3t^4$, $y = 8t^3$.
- 15. Find the asymptotes of the curve $x^3 + 3x^2y xy^2 3y^3 + x^2 2xy + 3y^2 + 4x + 7$.
- 16. Solve the equation $x^3 19x^2 + 114x 216 = 0$, given that the roots are in GP.
- 17. Find $\frac{1}{\alpha^5} + \frac{1}{\beta^5} + \frac{1}{\gamma^5}$ where α, β, γ are the roots of the equation $x^3 + 2x^2 3x 1 = 0$.
- 18. Solve the equation $x^3 6x 9 = 0$ using Cardon's method.

PART-C

ANSWER Any TWO Questions

- 19. a) If $y = (x + \sqrt{1 + x^2})^m$, Prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$.
 - b) Using Lagrange's multipliers method find the minimum value of u if

$$u = a^{3}x^{2} + b^{3}y^{2} + c^{3}z^{2} \text{ where } \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$
(8+12)

- 20. a) Find the radius of curvature of the cardioid $r = a(1 \cos \theta)$
 - b) Obtain the evolute of the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta)$
- 21. a) Solve $6x^5 x^4 43x^3 + 43x^2 + x 6 = 0$.

b) If the sum of the two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals

the sum of the other two, prove that $p^3 + 8r = 4pq$ (10+10)

22. Use Horner's method to calculate the positive root of the equation $x^3 + 24x - 50 = 0$ correct to two places of decimals. (20)

(2 X 20 = 40)

(8+12)