# 16UMIZALO2- MATHEMATICS FOR STATISTICS- II 

Date: 27-04-2017 01:00-04:00

Dept. No.

## PART A

Max. : 100 Marks

Answer all the questions:

1. Find the g.l.b and l.u.b of (i) $\left\{\pi+1, \pi+\frac{1}{2}, \pi+\frac{1}{3}, \ldots\right\}$ (ii) $\{\pi+1, \pi+2, \pi+3, \ldots\}$.
2. Define Monotone sequence.
3. If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
4. Define convergence of series.
5. If $|x-2|<1$, prove that $\left|x^{2}-4\right|<5$.
6. Define jump discontinuity.
7. State Rolle's theorem.
8. Define derivative of a function $f$ at a point $c$.
9. Prove that $\int_{0}^{\infty} \frac{1}{e^{x}} d x$ is convergent.
10. Write any two properties of Riemann Integral.

## PART B

Answer any FIVE questions:
$(5 \times 8=40)$
11. Find $N \in I$ such that $\left|\frac{2 n}{n+3}-2\right|<\frac{1}{5}$ and find the limit of $\left\{\frac{2 n}{n+3}\right\}$.
12. If $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences of real numbers, if $\lim _{n \rightarrow \infty} S_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$ then prove that $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=L+M$.
13. If $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
14. If $f$ is continuous at $a$ and $g$ is continuous at $f(a)$, then prove that $g \circ f$ is continuous at $a$
15. State and prove the law of the mean
16. If $f$ and $g$ both have derivatives at $c \in R$ and $g^{\prime}(c) \neq 0$ then prove that $f g, \frac{f}{g}$ has a derivative at $c$ and $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c),\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}$.
17. Prove that $\int_{a}^{\infty} \frac{1}{x^{p}} d x$ for $x>a>0$ converges for $p>1$ and diverges for $p \leq 1$.
18. Let $f$ be a bounded function on the closed bounded interval $[a, b]$ then prove that $f$ is Riemann integrable if and only if for every $\varepsilon>0$, there exists a subdivision $P$ on $[a, b]$ such that $U[f ; P]-$ $L[f ; P]<\varepsilon$.

## PART C

Answer any TWO questions:
$(2 \times 20=40)$
19. (a) If $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences of real numbers, if $\lim _{n \rightarrow \infty} S_{n}=L$ and $\lim _{n \rightarrow \infty} t_{n}=M$ then prove that $\lim _{n \rightarrow \infty}\left(s_{n} t_{n}\right)=L M$.
(b) If $A, B$ are subsets of $S$, then prove that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$.
20. (a) For $a, b \in R$, show that $||a|-|b|| \leq|a-b|$. Then prove that $\left\{\left|s_{n}\right|\right\}$ converges to $|L|$ if $\left\{s_{n}\right\}$ converges to $L$.
(b) If $\left\{a_{n}\right\}$ is a sequence of positive numbers such that $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq a_{n+1} \geq \cdots$ and $\lim _{n \rightarrow \infty} a_{n}=0$ then prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ is convergent.
21. (a) Show that $\lim _{x \rightarrow 1} \sqrt{x+3}=2$ using definition.
(b) State and prove Taylor's theorem.
22. (a) State and prove Binomial theorem.
(b) Let $f$ be bounded function on $[a, b]$ and if $P_{1}$ and $P_{2}$ are any two partitions of $[a, b]$ then prove that $U\left[f ; P_{1}\right] \geq L\left[f ; P_{2}\right]$.

