LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **STATISTICS**

SECONDSEMESTER - APRIL 2017

16UMT2AL02- MATHEMATICS FOR STATISTICS- II

PART A

Date: 27-04-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

(10 X 2 = 20)

Answer all the questions:

- 1. Find the g.l.b and l.u.b of (i) $\left\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \ldots\right\}$ (ii) $\{\pi + 1, \pi + 2, \pi + 3, \ldots\}$.
- 2. Define Monotone sequence.
- 3. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then prove that $\lim_{n \to \infty} a_n = 0$.
- 4. Define convergence of series.
- 5. If |x-2| < 1, prove that $|x^2-4| < 5$.
- 6. Define jump discontinuity.
- 7. State Rolle's theorem.
- 8. Define derivative of a function f at a point c.
- 9. Prove that $\int_0^\infty \frac{1}{e^x} dx$ is convergent.
- 10. Write any two properties of Riemann Integral.

PART B

Answer any FIVE questions:

(5X8=40)

- 11. Find $N \in I$ such that $\left|\frac{2n}{n+3} 2\right| < \frac{1}{5}$ and find the limit of $\left\{\frac{2n}{n+3}\right\}$.
- 12. If $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers, if $\lim_{n\to\infty} s_n = L$ and $\lim_{n\to\infty} t_n = M$ then prove that $\lim_{n\to\infty} (s_n + t_n) = L + M$.
- 13. If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then prove that $\sum_{n=1}^{\infty} a_n$ converges.
- 14. If f is continuous at a and g is continuous at f(a), then prove that $g \circ f$ is continuous at a
- 15. State and prove the law of the mean
- 16. If f and g both have derivatives at $c \in R$ and $g'(c) \neq 0$ then prove that $fg, \frac{f}{g}$ has a derivative at c and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c), \left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

- 17. Prove that $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ for x > a > 0 converges for p > 1 and diverges for $p \le 1$.
- 18. Let *f* be a bounded function on the closed bounded interval [*a*, *b*] then prove that *f* is Riemann integrable if and only if for every $\varepsilon > 0$, there exists a subdivision *P* on [*a*, *b*] such that $U[f; P] L[f; P] < \varepsilon$.

PART C

Answer any TWO questions:

- (2 X 20 = 40)
- 19. (a) If $\{s_n\}$ and $\{t_n\}$ are sequences of real numbers, if $\lim_{n\to\infty} s_n = L$ and $\lim_{n\to\infty} t_n = M$ then prove that $\lim_{n\to\infty} (s_n t_n) = LM$.
 - (b) If A, B are subsets of S, then prove that $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$.

12+8)

- 20. (a) For a, b ∈ R, show that ||a| |b|| ≤ |a b|. Then prove that {|s_n|} converges to |L| if {s_n} converges to L.
 (b) If {a_n} is a sequence of positive numbers such that a₁ ≥ a₂ ≥ ··· ≥ a_n ≥ a_{n+1} ≥ ··· and lim_{n→∞} a_n = 0 then prove that the alternating series ∑[∞]_{n=1}(-1)ⁿ⁺¹a_n is convergent. (8+12)
- 21. (a) Show that $\lim_{x\to 1} \sqrt{x+3} = 2$ using definition. (b) State and prove Taylor's theorem. (8+12)
- 22. (a) State and prove Binomial theorem. (b) Let *f* be bounded function on [*a*, *b*] and if P_1 and P_2 are any two partitions of [*a*, *b*] then prove that $U[f; P_1] \ge L[f; P_2]$. (10+10)

\$\$\$\$\$\$\$\$\$