Date: 25-04-2017 01:00-04:00

Dept. No.
Max. : 100 Marks

PART-A

ANSWERALL THE QUESTIONS

1. Find the equation to the plane through $(1,2,3)$ parallel to the plane $4 x+5 y-3 z+7=0$.
2. Write the equation of the symmetric form of the straight line.
3. Find the equation of the sphere whose centre is $(1,2,3)$ and radius is 4 .
4. Write the equation of the tangent plane to the sphere.
5. Write the formula for Fourier series.
6. Define an odd function with an example.
7. Find the number of divisors of 360 .
8. State Fermat's theorem.
9. Show that $(b+c-a)^{2}+(c+a-b)^{2}+(a+b-c)^{2} \geq b c+c a+a b$.
10. Show that $\mathrm{n}^{\mathrm{n}}>1.3 .5 \ldots(2 \mathrm{n}-1)$.

PART-B

ANSWERANY FIVE QUESTIONS

11. Show that, if a plane has intercepts $\mathrm{a}, \mathrm{b}, \mathrm{c}$ on the coordinate axes and is at a distance p from the origin , then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$.
12. Show that the lines $\frac{x-2}{2}=\frac{y-3}{-1}=\frac{z+4}{3} ; \quad \frac{x-3}{1}=\frac{y+1}{3}=\frac{z-1}{1}$ are coplanar. Find their point of intersection and the equation to the plane containing them.
13. Find the equation of the sphere whose centre is the point $(6,-1,2)$ and which touches the plane $2 x-y+2 z-2=0$.
14. Find the equation of the sphere through the points $(0,-2,3),(1,5,-1),(2,0,1)$ and $(4,-1,2)$.
15. Find a sine series for $\mathrm{f}(\mathrm{x})=\mathrm{c}$ in the range 0 to π.
16. Find the highest power of 3 dividing 1000 !.
17. Show that $13^{2 n+1}+9^{2 n+1}$ is divisible by 22 .
18. Show that $\left(x^{m}+y^{m}\right)^{n}<\left(x^{n}+y^{n}\right)^{m}$ if $m>n$.

PART-C

ANSWERANYTWOQUESTIONS

19. (a) Find the equation of the plane through $(2,-1,1)$ and perpendicular to the line joining the points (3,4,-1) and ($2,-1,5$).
(b)Find the shortest distance between the lines

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \quad \text { and } \quad \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4} .
$$

20. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B, C. Find the equation of the circumcircle of the triangle ABC and determine also the coordinates of the centre and radius.
21. (a) Show that $x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$ in the interval $(-\pi \leq x \leq \pi)$.
(b) Show that $8^{\text {th }}$ power of any number is of the form 17 m or $17 \mathrm{~m} \pm 1$.
22. (a) State and prove Wilson's theorem.
(b) If $s=a_{1}+a_{2}+\ldots+a_{n}$ then show that $\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\ldots+\frac{s}{s-a_{n}}>\frac{n^{2}}{n-1}$ unless $a_{1}=a_{2}=\ldots=a_{n}$.
