LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2017

THEORY 16UMT2MC02- ANA. GEO. OF 3D, FOURIER SERIES AND NUMBER THEORY

Date: 25-04-2017 Dept. No. Max.: 100 Marks

01:00-04:00

PART-A

ANSWER ALL THE QUESTIONS

 $(10 \times 2 = 20)$

- 1. Find the equation to the plane through (1,2,3) parallel to the plane 4x+5y-3z+7=0.
- 2. Write the equation of the symmetric form of the straight line.
- 3. Find the equation of the sphere whose centre is (1,2,3) and radius is 4.
- 4. Write the equation of the tangent plane to the sphere.
- 5. Write the formula for Fourier series.
- 6. Define an odd function with an example.
- 7. Find the number of divisors of 360.
- 8. State Fermat's theorem.
- 9. Show that $(b+c-a)^2 + (c+a-b)^2 + (a+b-c)^2 \ge bc + ca + ab$.
- 10. Show that $n^n > 1.3.5...(2n-1)$.

PART-B

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8 = 40).$

- 11. Show that, if a plane has intercepts a, b,c on the coordinate axes and is at a distance p from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{n^2}$.
- 12. Show that the lines $\frac{x-2}{2} = \frac{y-3}{-1} = \frac{z+4}{3}$; $\frac{x-3}{1} = \frac{y+1}{3} = \frac{z-1}{1}$ are coplanar. Find their point of intersection and the equation to the plane containing them.
- 13. Find the equation of the sphere whose centre is the point (6,-1,2) and which touches the plane 2x-y+2z-2=0.
- 14. Find the equation of the sphere through the points (0,-2,3), (1, 5, -1), (2, 0, 1) and (4, -1, 2).
- 15. Find a sine series for f(x) = c in the range 0 to π .
- 16. Find the highest power of 3 dividing 1000!.
- 17. Show that $13^{2n+1} + 9^{2n+1}$ is divisible by 22.
- 18. Show that $(x^m+y^m)^n < (x^n+y^n)^m$ if m > n.

PART-C

ANSWER ANY TWO QUESTIONS

(2x 20 = 40)

- 19. (a) Find the equation of the plane through (2, -1, 1) and perpendicular to the line joining the points (3,4,-1) and (2,-1,5).
 - (b) Find the shortest distance between the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.

- 20. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in A, B, C. Find the equation of the circumcircle of the triangle ABC and determine also the coordinates of the centre and radius.
- 21. (a) Show that $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi \le x \le \pi)$.
- (b) Show that 8^{th} power of any number is of the form 17m or $17m \pm 1$.
- 22. (a) State and prove Wilson's theorem.

(b) If
$$s = a_1 + a_2 + ... + a_n$$
 then show that $\frac{s}{s - a_1} + \frac{s}{s - a_2} + ... + \frac{s}{s - a_n} > \frac{n^2}{n - 1}$ unless $a_1 = a_2 = ... = a_n$.
