LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – STATISTICS FIRSTSEMESTER – APRIL 2017 M 102 – GENERAL MATHEMATICS - 1			
Date: 29-04-2017 09:00-12:00	Dept. No. Max. : 100 Marks		
	Answer any SIX	questions	
1. (a) Find the n^{th} derivative	e of $x^2 log x$.		
$(1+x^2)y_{n+2} + (2n+1)$	^m show that $(1 + x^2)y_2 + xy_1$ $xy_{n+1} + (n^2 - m^2)y_n = 0.$ e subtangent, subnormal, tange		(8+9) e cissoid $y^2 = \frac{x^3}{2a-x}$.
	rsection of the cardioids $r = a$ + $3xyz$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial x}$		osθ). (9+8)
3. (a) If $u = x^3 + y^3 + z^3 + 3xyz$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 3u$. (b) Find the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1,1).			(9+8)
4. (a) Evaluate $\int \frac{3x+7}{2x^2+3x-2} dx$	x.		
(b) Integrate $x^2 e^{3x}$ with r	respect to x.		(9+8)
5. (a) Prove that $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}.$			
(b) Evaluate $\int_0^{\pi/2} \sin^8 x \cos^6 x dx$. (9+8)			
6. (a) Derive the standard ec	juation of parabola.		
(b) Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$.			(8+9)
7. (a) Solve the equation $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$ which has a root $2 + \sqrt{3}$.			
(b) Diminish the roots of $x^4 - 5x^3 + 7x^2 - 4x + 5 = 0$ by 2 and find the transformed equation. (8+9)			
8. (a) Solve the equation $x^3 - 12x^2 + 39x - 28 = 0$ whose roots are in A.P.			
(b) Solve the reciprocal equation $6x^6 - 35x^5 + 56x^4 - 56x^2 + 35x - 6 = 0$.			(010)
9. (a) Express $\cos 6\theta$ in terms of $\cos \theta$.			(8+9)
(b) Prove that $sin^4\theta cos^2\theta = \frac{1}{2^5}(cos 6\theta - 2cos 4\theta - cos 2\theta + 2).$			(9+8)
10. (a) Separate into real and imaginary parts of (i) $sinh(x + iy)$ (ii) $cosh(x + iy)$.			
(b) If $sin(A+iB) = x + iy$, prove that (i) $\frac{x^2}{cosh^2B} + \frac{y^2}{sinh^2B} = 1$ (ii) $\frac{x^2}{sin^2A} - \frac{y^2}{cos^2A} = 1$. (9+8)			
	*****	****	

I