LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - APRIL 2017

MT 1500- ALGEBRA, ANALY. GEO., CALCULUS & TRIGONOMETRY

Date: 26-04-2017 09:00-12:00

Dept. No.

Max.: 100 Marks

PART - A

Answer ALL the questions:

(10 X 2 = 20 Marks)

- 1. Find the n^{th} derivative of y = sin(ax + b).
- 2. Find the polar subtangent and polar subnormal of the curve $r = e^{\theta cot\alpha}$
- 3. Write the caretesian formula for the radius of curvature.
- 4. Define involute.
- 5. Find the equation, with rational coefficients one of whose roots is $\sqrt{5} + \sqrt{2}$
- 6. Calculate the sum of the cubes of the roots of the equation $x^4 + 2x + 3 = 0$
- 7. Show that $\cosh^2 x \sinh^2 x = 1$
- 8. Write down the expansion for $\sin n\theta$.
- 9. Write the polar equation of a conic.
- 10. Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$

PART - B

Answer any FIVE questions:

(5 X 8 = 40 Marks)

- 11. Find the n^{th} differential coefficient of $cosx \cdot cos 2x \cdot cos 3x$.
- 12. Find the slope of the tangent with the initial line for the cardioid

 $r = a(1 - \cos\theta)$ at $\theta = \frac{\pi}{6}$.

13. What is the radius of curvature of the curve $x^4 + y^4 = 2$ at the point (1,1)?

14. The equation $x^3 - 3x + 1 = 0$ has a root between 1 and 2. Calculate it to three places of decimals by using Homer's method.

15. Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.

16. Separate into real and imaginary parts $tan^{-1}(x+iy)$.

17. Derive the polar equation $\frac{l}{d} = l + e \cos\theta$ of a conic.

18. Show that in a conic the semi-latus rectum is the harmonic mean between the segments of a fical chord.

PART - C
Answer any TWO questions:(2 x 20=40 Marks)19. If
$$y = \sin(m \sin^{-1} x)$$
, prove that $(1 - x^2)y_2 - xy_1 + m^2y = 0$ and
 $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$ (120. a) For the curves $x^2 = 4y$ and $y^2 = 4x$, find the angle of intersection.b) Provethat the radius of curvature at any point of the cycloid(12+8) $x = a(\theta + sin\theta)$ and $y = a(1 - cos\theta)$ is $4acos\frac{\theta}{2}$.(12+8)21. Solve the equation $81x^3 - 18x^2 - 36x + 8 = 0$ whose roots are in harmonicprogression.(2 x 1) Sum to infinity the series $cosa + \frac{1}{2}cos(\alpha + \beta) + \frac{1}{2} \cdot \frac{3}{4}cos(\alpha + 2\beta) + \cdots$

b) If e and e_1 are two extremities of hyperbola and its conjugate show that $e^{-2} + e_1^{-2} = 1$

(12+8)
