LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 MSc.DEGREE EXAMINATION - MATHEMATICS FIRSTSEMESTER - APRIL 2017

MT 1819- PROBABILITY THEORY \& STOCHASTIC PROCESSES

Date: 05-05-2017
09:00-12:00

Dept. No.
Max. : 100 Marks

Section-A
Answer all the questions
$10 \times 2=20$ marks

1. If two fair dice are rolled find the probability of getting the sum to be at least 4 .
2. If 4 marbles are chosen without replacement from an urn containing 6 blue 5 green and 4 yellow marbles, find the probability of getting at least 2 green marbles.
3. If $\mathrm{P}(\mathrm{A})=1 / 2, \mathrm{P}(\mathrm{B})=1 / 3$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=1 / 5$ find $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}\right)$.
4. Define probability density function of a random variable.
5. If X is Poisson such that $P(X=2)=P(X=4)$ findmean of X.
6. If $f(x, y)=2,0<x<y<1$, zero elsewhere, find the marginal p.d.f. of X.
7. Define gamma distribution with two parameters.
8. Define convergence in distribution.
9. Write a note on maximum likelihood estimation.
10. Define recurrence and periodicity of states of a Markov chain.

Section-B
Answer any five questions
$5 \times 8=40$ marks
11. State and prove Boole's inequality.
12. If $f(x)=(x+2) / 18,-2<x<4$, zero elsewhere, find (i) $\mathrm{P}(|X|<2)$
(ii) $\mathrm{P}\left(\mathrm{X}^{2}<9\right)$.
13. Derive mean and variance of Poisson distribution.
14. Let $Y_{1}<Y_{2}<Y_{3} \ldots<Y_{n}$ be the order statistics of a random sample of size n from a distribution with p.d.f. $\mathrm{f}(\mathrm{x})=1,0<\mathrm{x}<1$, zero elsewhere. Show that the $\mathrm{k}^{\text {th }}$ order statistic Y_{k} has a beta p.d.f. with parameters $\alpha=\mathrm{k}$ and $\beta=\mathrm{n}-\mathrm{k}+1$.
15. If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$, find the maximum likelihood estimator of μ.
16. Five measurements of the output of two units have given the following results(in kgs of material per one hour of operation):
$\begin{array}{lllll}\text { Unit A : } 14.1 & 10.1 & 14.7 & 13.7 & 14.0\end{array}$
Unit B : 14.014.5 13.712 .714 .1
Assuming that both samples have been obtained from nomal populations, test at 1% level of significance if two populations have the same variance.
17. State and prove Chebyshev's inequality.
18. Show that the one dimensional random walk is recurrent if and only if $\mathrm{p}=\mathrm{q}=1 / 2$.

Section-C

Answer any two questions

$2 \times 20=40$ marks
19.(a) State and prove addition theorem on probability for nevents.
(b) State and prove Bayes' theorem.
(c) If $\mathrm{f}(\mathrm{x})=2 \mathrm{x}, 0<\mathrm{x}<1$, zero elsewhere, find (i) $\mathrm{P}(1 / 2<\mathrm{X}<3 / 4)$
(ii) $\mathrm{P}(-1 / 2<\mathrm{X}<1 / 2)$. Also find $\mathrm{E}(\mathrm{X})$.
20.(a) Derive the MGF of exponential distribution and hence find mean and variance.
(b) Let X be $\mathrm{N}\left(\mu, \sigma^{2}\right)$ so that $\mathrm{P}(\mathrm{X}<89)=0.90$ and $\mathrm{P}(\mathrm{X}<94)=0.95$. Find μ and σ^{2}. (10 marks)
21.(a) Let X_{1} and X_{2} have the joint p.d.f. $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=2,0<\mathrm{x}_{1}<\mathrm{x}_{2}<1$, zero elsewhere.

Find the conditional mean and variance of X_{1} given $\mathrm{X}_{2}=\mathrm{x}_{2}, 0<\mathrm{x}_{2}<1$.
(b) Derive mean and variance of beta distribution of second kind.
22. (a) Fit a Poisson distribution to the following data test the goodness of fit at 5% level of significance.
No. of errors/page: $\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
No. of pages $\quad: \begin{array}{lllllll}150 & 95 & 40 & 20 & 10 & 3 & 1\end{array}$
(b) Derive Kolmogorov forward and backward differential equations for for birth and death process.

\$\$s\$\$s\$\$8

