

14. Show that
$$\beta(m, n) = 2 \int_{0}^{\pi/2} \sin^{2m-1} \theta \cos^{2n-1} \theta \, d\theta$$
.
15. Evaluate $\int_{0}^{1} x^{m} (\log \frac{1}{x})^{n} \, dx$
16. Prove that the series $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ is divergent.
17. Sum the series $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots$

18. Sum the series
$$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \dots$$

$\underline{PART-C}$

(2 X 20 = 40 marks)

19. (a). Evaluate $\int_{0}^{\pi/4} \log(1 + \tan \theta) d\theta$.

Answer any TWO questions:

- (b). Obtain the reduction formula for $\int \sin^n x \, dx$ where n is a positive integer. (10+10)
- 20. (a). Evaluate $\iiint xyz \, dx \, dy \, dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$
 - (b). Change the order of integration in $\int_{0}^{a} \int_{x^2/a}^{2a-x} xy dy dx$ and evaluate it. (7+13)
- 21. (a). Prove that $\beta(m, n) = \frac{\lceil m \rceil n}{\lceil m + n \rceil}$.
 - (b). Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of Gamma functions. (15+5)
 - 22.(a). Find the sum to infinity of the series $\frac{15}{16} + \frac{15.21}{16.24} + \frac{15.21.27}{16.24.32} + ...\infty$

(b). Show that the series $\frac{1}{1^k} + \frac{1}{2^k} + \frac{1}{3^k} + \dots$ is convergent when k > 1 and divergent when $k \le 1$.

(10+10)
