Date: 05-05-2017 01:00-04:00

Dept. No.

PART-A
Answer ALL questions:

1. Write the intercept form and normal form of the equation of the plane.
2. What is the angle between the plane $a x+b y+c z+d=0$ and the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
3. Find the equation of the sphere which has its centre at the point $(-1,2,-3)$ and radius 3 units.
4. Write the equation of the tangent plane to the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ at the point $\left(x_{1}, y_{1}, z_{1}\right)$
5. Define odd and even functions.
6. Find the Fourier coefficient a_{0} for the function $f(x)=x \sin x, 0<x<2 \pi$.
7. Prove that $\left(\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2 n-1}{2 n}\right)^{1 / n}<1$.
8. State Cauchy's inequality.
9. Define Euler's function. What is $\phi(4)$?
10. State Fermat's theorem.

PART-B

Answer any FIVE questions:
$(5 \times 8=40)$
11. Find the equation of the plane passing through the points $(3,1,2),(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$
12. Find the shortest distance between the lines
$\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}, \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$.
13. Find the equation of the sphere which has its centre at the point $(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$
14. Obtain the half range cosine series for the function $f(x)=x$ in the interval $(0, \pi)$.
15. Prove that if $n>2,(n!)^{2}>n^{n}$
16. If x and y are positive quantities whose sum is 4 , show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \geq 12 \frac{1}{2}$.
17. Show that the $8^{\text {th }}$ power of any number is of the form $17 m$ or $17 m \pm 1$.
18. Find the highest power of 3 dividing 1000 !

PART-C

Answer any TWO questions:

$(2 \times 20=40)$
19. a) Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}, \frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar.

Find also their point of intersection and the plane through them.
b) Find the image of the line $\frac{x-1}{2}=\frac{y+2}{-5}=\frac{z-3}{2}$ in the plane

$$
\begin{equation*}
2 x-3 y+2 z+3=0 . \tag{8+12}
\end{equation*}
$$

20. a)Find the equation of the sphere which touches the sphere $x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$ at the point $(2,-2,1)$ and passes through the origin.
b) Find the equation of the sphere through the four points
$(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
21. a) Determine the Fourier expansion for $f(x)=\left\{\begin{array}{cc}-\pi & \text { in }(0, \pi) \\ x-\pi i n & (\pi, 2 \pi)\end{array}\right.$
and show that $\sum_{r=1}^{\infty} \frac{1}{(2 r+1)^{2}}=\frac{\pi^{2}}{8}$
b) Prove that $8 x y z<(y+z)(z+x)(x+y)<\frac{3}{8}\left(x^{3}+y^{3}+z^{3}\right)$
22. a) Show that if x and y are both prime to the prime number n, then $x^{n-1}-y^{n-1}$ is divisible by n.
b) State Wilson's theorem and prove that $18!+1$ is divisible by 437 .
