LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER - APRIL 2017

MT 2503- ANALY. GEOM. OF 3D, FOURIER SERIES & NUM. THEORY

Date: 05-05-2017 01:00-04:00

Answer ALL questions:

Dept. No.

Max.: 100 Marks

PART-A

(10 X 2 = 20)

(5X8=40)

- 1. Write the intercept form and normal form of the equation of the plane.
- 2. What is the angle between the plane ax + by + cz + d = 0 and the line $\frac{x x_1}{l} = \frac{y y_1}{m} = \frac{z z_1}{n}$
- 3. Find the equation of the sphere which has its centre at the point (-1, 2, -3) and radius 3 units.
- 4. Write the equation of the tangent plane to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ at the point (x_1, y_1, z_1)
- 5. Define odd and even functions.
- 6. Find the Fourier coefficient a_0 for the function $f(x) = x \sin x$, $0 < x < 2\pi$.
- 7. Prove that $\left(\frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n}\right)^{1/n} < 1$.
- 8. State Cauchy's inequality.
- 9. Define Euler's function. What is $\phi(4)$?
- 10. State Fermat's theorem.

PART-B

Answer any FIVE questions:

- 11. Find the equation of the plane passing through the points (3,1,2), (3,4,4) and perpendicular to the plane 5x + y + 4z = 0
- 12. Find the shortest distance between the lines

 $\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}, \ \frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2} .$

- 13. Find the equation of the sphere which has its centre at the point (6, -1, 2) and touches the plane 2x y + 2z 2 = 0
- 14. Obtain the half range cosine series for the function f(x) = x in the interval $(0, \pi)$.
- 15. Prove that if n > 2, $(n!)^2 > n^n$

16. If x and y are positive quantities whose sum is 4, show that $\left(x + \frac{1}{x}\right)^2 + \left(y + \frac{1}{y}\right)^2 \ge 12\frac{1}{2}$.

17. Show that the 8th power of any number is of the form 17m or $17m \pm 1$.

18. Find the highest power of 3 dividing 1000! .

PART-C

Answer any TWO questions:

19. a) Prove that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}$, $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Find also their point of intersection and the plane through them.

b) Find the image of the line
$$\frac{x-1}{2} = \frac{y+2}{-5} = \frac{z-3}{2}$$
 in the plane $2x - 3y + 2z + 3 = 0$. (8+12)

20. a)Find the equation of the sphere which touches the sphere x² + y² + z² - 6x + 2z + 1 = 0 at the point(2, -2, 1) and passes through the origin.
b) Find the equation of the sphere through the four points (2,3,1), (5,-1,2), (4,3,-1) and (2,5,3). (10+10)

21. a) Determine the Fourier expansion for $f(x) = \begin{cases} -\pi & in(0, \pi) \\ x - \pi in(\pi, 2\pi) \end{cases}$ and show that $\sum_{r=1}^{\infty} \frac{1}{(2r+1)^2} = \frac{\pi^2}{8}$

b) Prove that $8xyz < (y+z)(z+x)(x+y) < \frac{3}{8}(x^3+y^3+z^3)$ (12+8)

22. a) Show that if x and y are both prime to the prime number n, then $x^{n-1} - y^{n-1}$ is divisible by n.

b) State Wilson's theorem and prove that 18! +1 is divisible by 437.

(10+10)

(2 X 20 = 40)
