LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034		
M.Sc. DEGREE EXAMINATION - MATHEMATICS		
SECONDSEME:	STER – APRIL 2017	
MT 2814- O	OMPLEX ANALYSIS	
Date: 26-04-2017 Dept. No. 01:00-04:00	Max. : 100 Marks	
Answer all the questions:		
1. (a) Let f be analytic in the disk $B(a; R)$ and support	ose that γ is a closed rectifiable curve in $B(a; R)$. Then	
prove that $\int_{V} f = 0$.	(5)	
, (OR	
(b) Let G be a connected open set and let $f: G \rightarrow$	\mathbb{C} be an analytic function. Then prove that $f \equiv 0$ if and	
only if there is a point a in G such that $f^{(n)}(a)$	$= 0$ for each $n \ge 0$.	
	(5)	
(c) (i) Let $f: G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a; a)$ prove that $f(z) = \frac{1}{2} \int \frac{f(w)}{w} dw$ for $ z - a \le 1$	$f(r) \subset G(r > 0)$. If $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$, then	
(ii) State and prove Cauchy's Estimate.	(10+5)	
	OR	
(A) (i) If $u = [0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve	and a t fultion prove that $\frac{1}{2}\int \frac{1}{2} dz$ is an integer	
$(0) (1) \text{ If } \gamma \cdot [0,1] \rightarrow \mathbb{C} \text{ is a cross recurrence of a conduct for } C \rightarrow \mathbb{C}$	and $u \not\in \{\gamma\}$ then prove that $\frac{1}{2\pi i} J_{\gamma} = \frac{1}{z-a} uz$ is an integer.	
(11) Let G be an open set and let $f: G \to \mathbb{Q}$ be a G.	(5+10)	
2. (a) Let $0 < R_1 < R_2 < \infty$ and suppose f is analy	tic on $ann(0; R_1, R_2)$. If $R_1 < r < R_2$, define $M(r) =$	
$max\{ f(re^{\omega}) : 0 < \theta < 2\pi\}$ then prove that	logM(r) is a convex function of $logr$.	
	5) תר	
(b) Prove that a differentiable function f on $[a, b]$	is convex if and only if f' is increasing (5)	
(c) State and prove Arzela Ascoli theorem.	(15) OD	
(d) State and prove Riemann Mapping theorem.	(15)	

3. (a) Let X be a set and let f, f₁, f₂, ... be functions from X into C such that f_n(x) → f(x) uniformly for x ∈ X. If there is a constant a such that Re f(x) ≤ a for all x ∈ X then prove that expf_n(x) → expf(x) uniformly for x ∈ X.
(5)

OR

	OR	
possible exception.	(5)	
4 (a) Let the an entire function of finite order then	prove that f assumes each complex number with one	
(d) State and prove Weierstrass factorization theorem	m (15)	
OR		
	(8+7)	
(ii) Prove that (a) $\left\{ \left(1 + \frac{z}{n}\right)^n \right\}$ converges to e^z i	in $H(\mathbb{C})$ (b) If $t \ge 0$ then $\left(1 - \frac{t}{n}\right)^n \le e^{-t}$ for all $n \ge t$.	
integer n_0 such that $f(x) = 0$ if and only if $g_n(x)$	$(z) = -1$ for some $n, 1 \le n \le n_0$.	
$f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely	and uniformly for x in X . Also prove that there is an	
into \mathbb{C} such that $\sum g_n(x)$ converges absolutely	and uniformly for x in X . Then prove that the product	
(c) (i) Let (X, d) be a compact metric space and	l let $\{g_n\}$ be a sequence of continuous functions from X	
zero if and only if $\sum_{k=1}^{\infty} log z_k$ converges.	(5)	
(b) Let $Rez_n > 0$, for all $n \ge 1$. Then prove that	$\prod_{k=1}^{\infty} z_k$ converges to a complex number different from	

(b) State and prove Jensen's formula.(5)(c) State and prove Mittag- Leffler's theorem.(15)

OR

(d) Let *f* be a non-constant entire function of order λ with f(0) = 1, and let $\{a_1, a_2, ...\}$ be the zeros of *f* counted according to multiplicity and arranged so that $|a_1| \le |a_2| \le \cdots$. If an integer $p > \lambda - 1$ then

prove that $\frac{d^p}{dz^p} \left(\frac{f'(z)}{f(z)} \right) = -p! \sum_{n=1}^{\infty} \frac{1}{(a_n - z)^{p+1}} \text{ for } z \neq a_1, a_2, \dots$ (15)

5. (a) Prove that any two bases of a same module are connected by a unimodular transformation.

(5)

OR

(b) Define $\zeta(z)$ and derive the relation between $\zeta(z)$ and $\sigma(z)$.	(5)
(c) Prove that $\wp(z)$ is an elliptic function.	(15)

OR

(d) (i) Show that
$$\begin{vmatrix} \wp(z) & \wp(z) & 1\\ \wp(u) & \wp'(u) & 1\\ \wp(u+z) & -\wp'(u+z) & 1 \end{vmatrix} = 0.$$

(ii) State and prove Legendre's relation.

(7+8)

\$\$\$\$\$\$\$\$