MT 2814 COMPLEX ANALYSIS

Date: 26-04-2017
01:00-04:00

Answer all the questions:

1. (a) Let f be analytic in the disk $B(a ; R)$ and suppose that γ is a closed rectifiable curve in $B(a ; R)$. Then prove that $\int_{Y} f=0$.

OR

(b) Let G be a connected open set and let $f: G \rightarrow \mathbb{C}$ be an analytic function. Then prove that $f \equiv 0$ if and only if there is a point a in G such that $f^{(n)}(a)=0$ for each $n \geq 0$.
(5)
(c) (i) Let $f: G \rightarrow \mathbb{C}$ be analytic and suppose $\bar{B}(a ; r) \subset G(r>0)$. If $\gamma(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$, then prove that $f(z)=\frac{1}{2 \pi i} \int_{Y} \frac{f(w)}{w-z} d w$ for $|z-a|<r$.
(ii) State and prove Cauchy's Estimate.

OR

(d) (i) If $\gamma:[0,1] \rightarrow \mathbb{C}$ is a closed rectifiable curve and $a \notin\{\gamma\}$ then prove that $\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{z-a} d z$ is an integer.
(ii) Let G be an open set and let $f: G \rightarrow \mathbb{C}$ be a differentiable function, then prove that f is analytic on G.
2. (a) Let $0<R_{1}<R_{2}<\infty$ and suppose f is analytic on $\operatorname{arm}\left(0 ; R_{1}, R_{2}\right)$. If $R_{1}<r<R_{2}$, define $M(r)=$ $\max \left\{\left|f\left(r e^{i \theta}\right)\right|: 0<\theta<2 \pi\right\}$ then prove that $\log M(r)$ is a convex function of logr.
(5)

OR

(b) Prove that a differentiable function f on $[a, b]$ is convex if and only if f^{\prime} is increasing.(5)
(c) State and prove Arzela Ascoli theorem.

OR

(d) State and prove Riemann Mapping theorem.
3. (a) Let X be a set and let f, f_{1}, f_{2}, \ldots be functions from X into \mathbb{C} such that $f_{n}(x) \rightarrow f(x)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re} f(x) \leq a$ for all $x \in X$ then prove that $\exp f_{n}(x) \rightarrow \exp f(x)$ uniformly for $x \in X$.

OR

(b) Let $R e z_{n}>0$, for all $n \geq 1$. Then prove that $\prod_{k=1}^{\infty} z_{k}$ converges to a complex number different from zero if and only if $\sum_{k=1}^{\infty} \log z_{k}$ converges.
(c) (i) Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ be a sequence of continuous functions from X into \mathbb{C} such that $\sum g_{n}(x)$ converges absolutely and uniformly for x in X. Then prove that the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for x in X. Also prove that there is an integer n_{0} such that $f(x)=0$ if and only if $g_{n}(x)=-1$ for some $n, 1 \leq n \leq n_{0}$.
(ii) Prove that (a) $\left\{\left(1+\frac{z}{n}\right)^{n}\right\}$ converges to e^{z} in $H(\mathbb{C})$ (b) If $t \geq 0$ then $\left(1-\frac{t}{n}\right)^{n} \leq e^{-t}$ for all $n \geq t$.

OR

(d) State and prove Weierstrass factorization theorem.
4. (a) Let f be an entire function of finite order, then prove that f assumes each complex number with one possible exception.

OR

(b) State and prove Jensen's formula.
(c) State and prove Mittag-Leffler's theorem.

OR

(d) Let f be a non-constant entire function of order λ with $f(0)=1$, and let $\left\{a_{1}, a_{2}, \ldots\right\}$ be the zeros of f counted according to multiplicity and arranged so that $\left|a_{1}\right| \leq\left|a_{2}\right| \leq \cdots$ If an integer $p>\lambda-1$ then prove that $\frac{d p}{d z p}\left(\frac{f^{\prime}(z)}{f(z)}\right)=-p!\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}-z\right)^{p+1}}$ for $z \neq a_{1}, a_{2}, \ldots$
5. (a) Prove that any two bases of a same module are connected by a unimodular transformation.

OR

(b) Define $\zeta(z)$ and derive the relation between $\zeta(z)$ and $\sigma(z)$.
(c) Prove that $\wp(z)$ is an elliptic function.

OR

(d) (i) Showthat $\left|\begin{array}{ccc}\wp(z) & \wp(z) & 1 \\ \wp(u) & \wp^{\prime}(u) & 1 \\ \wp(u+z) & -\wp^{\prime}(u+z) & 1\end{array}\right|=0$.
(ii) State and prove Legendre's relation.

