Date: 26-04-2017 09:00-12:00

Dept. No.

Max. : 100 Marks

ANSWER ALL QUESTIONS

I a) Design a DFA to accept all positive integers divisible by 5.
[OR]
b) Define a nondeterministic finite automata and give an example.
c) i) Let r be a regular expression. Then prove that there exists an NFA with $\in-$ moves that accepts L(r).
ii) Define regular expressions. Write an NFA with \in - moves to accept
$(001+110)^{*}+\left(1^{*}+11^{*}\right)^{*}$.
[OR]
d)i) Define ε closure and give an example
ii) Construct DFA equivalent to the following NFA.

	0	1
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
${ }^{*} \mathrm{q}_{1}$	ϕ	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
q_{2}	$\left\{\mathrm{q}_{1}\right\}$	ϕ

IIa) Prove that $L=\left\{a^{n^{3}} / n \geq 1\right\}$ is not regular. [OR]
b) Show that a homomorphism of a regular language is regular.
c)i) State and prove any two closure properties of regular languages.
ii) Write regular expressions for the following language over $\{0,1\}$. "The set of all strings containing 000 as a substring". Provide justification that your regular expression is correct.
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

(15)

III a) Construct a grammar to generate all palindromes over $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
[OR]
b) Write a grammar to generate all four digit even integers.
ci) Discuss about elimination of \in-productions and give an example.
ii) Write a grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
di) Eliminate the useless symbols from the grammar with the following production rules $\mathrm{S} \rightarrow \mathrm{a} \mathrm{A} / \mathrm{a} / \mathrm{Bb} / \mathrm{cC}, \quad \mathrm{A} \rightarrow \mathrm{aB}, \mathrm{B} \rightarrow \mathrm{a} / \mathrm{Aa}, \mathrm{C} \rightarrow \mathrm{cD}, \mathrm{D} \rightarrow \mathrm{ddd}$
ii) Convert the grammar with productions $\mathrm{A} \rightarrow \mathrm{BAB} / \in, \mathrm{B} \rightarrow \mathrm{BAa} / \in$ into CNF . (7+8)

IV a) Write about the different types of languages accepted by a pushdown automaton. [OR]
b) Define leftmost derivations and give an example.
c) If a language L is accepted by a PDA A by final state then prove that there exist a PDA B accepts the same language L by empty stack.
[OR]
d) Design a PDA to accept the set of all strings over $L=\left\{0^{n} 1^{2 n} / n \geq 1\right\}$ by
(1) Empty stack.
(2) Final state.

Va) Discuss an ID and moves between the ID's of a Turing Machine.
[OR]
b) Write about multi tape Turing machine .
c) Design a TM to to accept $L=\left\{0^{n} 1^{n} 2^{n} / n \geq 1\right\}$ (15)
[OR]
d) Design a Turing Machine
(i) to compute $f(n)=2 n, n \in N, n \geq 1$.
(ii)to add two positive integers.

