LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTHSEMESTER-APRIL 2017
MT 5510- STATICS

Date: $27-04-2017$
$01: 00-04: 00$

Dept. No.

PART-A

Answer all the questions

Max. : 100 Marks
($10 \times 2=20$)

1. State the Parallelogram law of forces.
2. State polygon law of forces.
3. Define arm of couple.
4. Define coefficient of friction.
5. What is the centre of gravity of a uniform solid hemisphere of radius ' r '?
6. What is the centre of gravity of a uniform hollow right circular cone?
7. State the principle of virtual work for a system of coplanar forces acting on a rigid body.
8. Define Stable equilibrium.
9. Define catenary.
10. Define span and sag.

PART-B

Answer any five questions

11. State and prove Lami's theorem.
12. Three equal strings of no sensible weight are knotted together to form an equilateral $\triangle A B C$ and a weight W is suspended from A. If the triangle and weight be supported with $B C$ horizontal by means of two strings at B and C each at angle 135° with $B C$, show that the tension in $B C$ is $\frac{W}{6}(3-\sqrt{3})$.
13. State and prove varignon's theorem on moments.
14. Find the center of gravity of uniform solid circular cone.
15. Find the centroid of the arc of the catenary $y=c \cosh \frac{x}{c}$ which is included between the lines $x=0$ and $x=a$.
16. A $\operatorname{rod} A B$ is movable about a pivot at A and B is attached a string whose other end is tied to a ring. The ring slides along a smooth horizontal wire passing through A. Prove that the horizontal force necessary to keep the ring at rest is $\frac{W \cos \alpha \cos \beta}{2 \sin (\alpha+\beta)}$ where W is the weight of the rod and α, β the inclinations of the rod and string to the horizontal.
17. A uniform chain, of length l, is to be suspended from two points A and B, in the same horizontal line so that either terminal tension is n times that at the lowest point. Show that the span $A B$ must be $\frac{1}{\sqrt{n^{2}-1}} \log \left(n+\sqrt{n^{2}-1}\right)$.
18. A string of length $2 l$ hangs over two small smooth pegs in the same horizontal level. Show that, if h is the sag in the middle, the length of either part of the string that hangs vertically is $h+l-2 \sqrt{h l}$.
19. (a) Two beads of weights W and $W^{\prime}\left(W^{\prime}>W\right)$ can slide on a smooth circular wire in a vertical plane. They are connected by a light string which subtends an angle 2β at the centre of the circle when the beads are in equilibrium on the upper half of the wire. Prove that the inclination α of the string to the horizontal is given by $\tan \alpha=\frac{W^{\prime}-W}{W^{\prime}+W} \tan \beta$.
(b) Two forces P and Q have a resultant R and the resolved part of R in the direction of P is of magnitude Q.Show that the angle between P and Q is $2 \sin ^{-1} \sqrt{\frac{P}{2 Q}}$.
20. (a) Find the resultant of two like parallel forces.
(b) Two like parallel forces P and $Q(P>Q)$ act at A and B respectively. If the magnitude of the forces are interchanged, show that the point of application of the resultant on AB will be displaced through the distance $\frac{P-Q}{P+Q} \cdot A B$.
21. Find the intrinsic equation of catenary and also find in Cartesian form.
22. (a) Find the center of gravity of a sector of uniform thin circular plate subtending angle 2α at the center.
(10)
(b) A solid hemisphere is supported by a string fixed to a point on its rimand to a point on the smooth vertical wall with which the curved surface of the hemisphere is in contact. If θ and ϕ are the inclinations of the string and the plane base of the hemisphere to the vertical, prove that the principle of virtual work, that $\tan \phi=\frac{3}{8}+\tan \theta$.
