B.Sc.DEGREE EXAMINATION - MATHEMATICS

SIXTHSEMESTER-APRIL 2017
MT 6603 / MT 6600- COMPLEX ANALYSIS

Date: 18-04-2017
09:00-12:00

Dept. No.

PART-A

Max. : 100 Marks
$(10 \times 2=20)$

1. Show that $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic.
2. Find the modulus of $\frac{(2-i)(1+i)}{1-i}$.
3. Using Cauchy's integral formula evaluate $\int_{C} \frac{z d z}{2 z+1}$ where C is $|z|=2$.
4. Prove that $\int_{-C} f(z) d z=-\int_{C} f(z) d z$.
5. Write the Maclaurin's series expansion of $f(z)$.
6. Define Meromorphic function.
7. Calculate the residue of $\frac{z+1}{z^{2}-2 z}$ at its poles.
8. State Rouche's theorem.
9. Determine the angle of rotation and scale factor at the point $z=2+i$ under the mapping $w=z^{2}$.
10. Find the invariant points of the transformation $w=\frac{z}{2-z}$.

PART-B

Answer any FIVE questions

11. If $f(z)=u(x, y)+i v(x, y)$ is an analytic function $\operatorname{and} u(x, y)=e^{y}(x \cos y-y \sin y)$, find $f(z)$.
12. Derive the C -R equations in polar coordinates.
13. State and prove Cauchy's integral formula.
14. Expand $f(z)=\sin z$ in a Taylor's series about $z=\pi / 4$ and determine the region of convergence of the series.
15. State and prove Maximum modulus theorem.
16. Find the residue of $\frac{1}{z-\sin z}$ at its poles.
17. Find the bilinear transformation which maps $-1,0,1$ of the z-plane onto $-1,-i, 1$ of the w-plane. Show that under this transformation the upper half of the w-plane maps onto the exterior of the unit circle $|z|=1$.
18. Prove that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.

PART-C

Answer any TWO questions

19. State and prove the necessary and sufficient condition for differentiability of a complex valued function.
20. (a) State and prove Cauchy's theorem
(b) Show that $\int_{C}|z|^{2} d z=-1+i$ where C is the square with vertices $O(0,0), A(1,0), B(1,1), C(0,1)$.
21. (a) State and prove Laurent's theorem.
(b) Find the Laurent's series expansion of $f(z)=z^{2} e^{\frac{1}{z}}$ about $z=0$.
22. (a) Prove that $\int_{0}^{\infty} \frac{x^{4}}{x^{6}-1} d x=\frac{\pi \sqrt{3}}{6}$.
(b) Prove that any bilinear transformation preservers cross ratio.
