Dept. No.

PART - A

Answer ALL questions:

1. What is the condition for convergence of Gauss-Seidel method of iteration?
2. When Gauss elimination method is used to solve $\mathrm{AX}=\mathrm{B}, \mathrm{A}$ is transferred in a
\qquad matrix.
3. State the convergence condition for Newton's Raphson method.
4. What is the condition for the convergence of the iterative method for solving $x=\phi(x)$?
5. Write the divided difference table for the data given below:

x:	1	2	7	8
$y:$	1	5	5	4

6. State Lagrange's interpolation formula
7. Write down the range for P for which Stirling's formula gives most accurate result.
8. Laplace - Everett formula involves \qquad order differences.
9. State the Simpson's $\frac{3^{\text {th }}}{8}$ rule for numerical integration.
10. Write Taylor's series formula to solve $y^{\prime}=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$.

PART - B

Answer any FIVE questions:

11. Solve the system by Gauss - Elimination method

$$
2 x+3 y-z=5,4 x+4 y-3 z=3 \text { and } 2 x-3 y+2 z=2 .
$$

12. Solve for a positive root of x-Cosx=0 by RegulaFalsi method.
13. Find an iterative formula to find the reciprocal of a given number N and hence find the value of $\frac{1}{19}$.
14. Write a C program to interpolate Forward interpolation formula.
15. Using Lagrange's formula, prove $y_{1}=y_{3}-0.3\left(y_{5}-y_{-3}\right)+0.2\left(y_{-3}-y_{-5}\right)$ nearly.
16. Find the Value of $\operatorname{Cos} 51^{\circ} 42^{1}$ by using Gauss's backward interpolation formula from the table given below.

x	500	510	52^{0}	530	540
Cosx:	0.6428	0.6293	0.6157	0.6018	0.5878

17. Apply Simpson's $\frac{1}{3}$ rule to evaluate $\int_{0.5}^{0.7} \sqrt{x} e^{-x} d x$, dividing the range into 6 equal parts.
18. Using improved Euler method find y at $\mathrm{x}=0.1$ and y at $\mathrm{x}=0.2$ given $\frac{d y}{d x}+\frac{2 x}{y}=y, y(0)=1$.

PART - C

Answer any TWO questions:

19. (a) Using Gauss - Seidel iteration method solve the system of equations

$$
\begin{aligned}
& 10 x_{1}-2 x_{2}-x_{3}-x_{4}=3, \\
& -x_{1}-x_{2}+10 x_{3}+10 x_{2}-x_{3}-x_{4}=15, \\
& \hline
\end{aligned}
$$

Perform upto five iterations.
(b) Compute the real root of $\mathrm{x} \log \mathrm{x}=1.2$ correct to three decimal places using Newton's - Raphson method.
(10+10)
20. (a) Derive the Newton's divided difference formula
(b) In an examination the number of Candidates who obtained marks between certain limits were as follows

Marks	$: 0-19$	$20-39$	$40-59$	$60-79$	$80-99$
Number of	0				
Students	$: 41$	62	65	50	17

Estimate the number of candidates who obtained less than 70 marks
(8+12)
21. (a) From the following table, estimate $\mathrm{e}^{0.644}$ correct to five decimal places
Using
(i) Stirling's formula
(ii) Everett's formula.

X : 0.61
0.62
0.63
0.64
0.65
0.66
0.67
$e^{x}: 1.8404 \quad 1.8589 \quad 1.87761 .8965 \quad 1.9155 \quad 1.9348 \quad 1.9542$
(b) Find the value of Cos (1.74) from the following table.
X: 1.7
1.74
1.78
1.82
1.86
$\begin{array}{llllll}\text { Sinx : } & 0.9916 & 0.9857 & 0.9781 & 0.9691 & 0.9584\end{array}$
22. (a) Write a C program to find the value $\int_{a}^{b} y d x$ using Simpson's $\frac{1}{3}$ rule.
(b) Using Runge - Kutta method of fourth order, solve for y at

$$
x=1.2 \text { from } y^{1}=\frac{2 x y+e^{x}}{x^{2}+x e^{x}} \text { with } \mathrm{X}_{0}=1, \mathrm{Y}_{0}=0
$$

