MT 6606- COMIPLEX ANALYSIS

Date: 20-04-2017
09:00-12:00

Dept. No.
Max. : 100 Marks

PART-A

Answer ALLquestions:

1. Verify Cauchy-Riemann equation for the function $f(z)=|z|^{2}$ at $z=0$
2. Show that $u=3 x^{2} y+2 x^{2}-y^{3}-2 y^{2}$ is harmonic.
3. Define bilinear transformation.
4. Find the bilinear transformation which maps the points $z=0,-i,-1$ into the points $w=$ $i, 1,0$ respectively.
5. Evaluate $\int_{C} \frac{1}{z} d z$ where C is the circle $|z|=\mathrm{r}$.
6. Evaluate $\int_{C} \frac{\sin z}{\left(z-\frac{\pi}{2}\right)^{2}} d z$ where C is the circle $|z|=2$.
7. Find the poles of the function $f(z)=\frac{1}{z(z-1)^{2}}$.
8. Define essential singularity.
9. Calculate the residue of $\frac{z+1}{z^{2}-2 z}$ at its poles.
10. State Cauchy's residue theorem.

PART-B

Answer any FIVE questions:
11. If $\frac{\partial^{2}}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x}$, prove that $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$
12. If $f(z)=u(x, y)+i v(x, y)$ is an analytic function and $u(x, y)=\frac{\sin 2 x}{\cosh 2 y+\cos 2 x}$ find $f(z)$.
13. Prove that any bilinear transformation preserves cross ratio.
14. State and prove maximum modulus theorem.
15. (a). State and prove Liouville's theorem.
(b). Evaluate $\int_{c} \frac{z d z}{z^{2}-1}$ where C is the positively oriented circle $|z|=2 . \quad$ (4 marks)
16. Find the Taylor's series to represent $\frac{z^{2}-1}{(z+2)(z+3)} \mathrm{in}|z|<2$.
17. State and prove Riemann's theorem.
18. State and prove Argument theorem.

PART-C

Answer any TWO questions:
19. (a). Derive C.R. Equations in Polar Co-ordinates.
(b). State and prove Cauchy's Integral formula.
(10 marks)
(10 marks)
20. (a). Prove that a bilinear transformation $\mathrm{w}=\frac{a z+b}{c z+d}$ where $\mathrm{ad}-\mathrm{bc} \neq 0$ maps the realaxis into itself if and only if $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are real. (10 marks)
(b).Show that the transformation $w=\frac{5-4 z}{4 z-2}$ maps the unit circle $|Z|=1$ into a circle
of radius unity and centre $\frac{-1}{2}$
21. State and prove Laurent's theorem.
22. (a). State and prove Rouche's theorem.
(b). Evaluate $\int_{C} \tan z d z$ where C is $|z|=2$ using residue theorem. (10 marks)

