LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – MATHEMATICS

THIRDSEMESTER – APRIL 2018

16PMT3MC04- ALGORITHMIC GRAPH THEORY

Date: 04-05-2018 Time: 09:00-12:00 Dept. No.

Max. : 100 Marks

ANSWER ALL QUESTIONS

- I a) Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group. [OR]
 - b) Show that if every vertex of a graph G has degree 2, then G contains a cycle. (5)
 - c) i) State and prove Chavatal theorem for hamiltonian graphs.
 ii) Prove that a graph is bipartite if and only if it contains no odd cycle. (10+ 5) [OR]
 - d) (i) With usual notations prove that $\alpha^1(G) + \beta^1(G) = n(G)$.
 - (ii) Apply Dijkstra's algorithm to find shortest path from u to all other vertices of the following graph.

(5+10)

II a) Write about travelling salesman problem.

[OR]

- b) Show that a connected graph has an Euler's trail if and only if it has atmost two vertices of odd degree. (5)
- c) i) Show that closure of a graph is well defined

ii)Let G be a simple graph with $v \ge 3$. Prove that if $c(G)$ is	s complete then G is
Hamiltonian.	(7+8)
[OR]	
d) i)State and prove Dirac theorem for hamiltonian graphs.	
ii)Write about Chinese postman problem.	(10+5)

III a) Show that a tree has atmost one perfect matching.

[OR]

- b) Find the number of different perfect matchings in K_{2n} . (5)
- c) i) Prove that a matching M in G is a maximum matching iff G contains no M augmenting path.
 ii) Let M be a matching and K be a covering with |M|=|K|. Then show that M is a maximum matching and K is a minimum covering. (10+5)

d) i) Define split graph and prove that complement of a split graph is a split graph.ii) State and prove any three properties of a split graph.		
(8 + 7)		
IV a) Write BFS algorithm.		
[OR] b) Define permutation graph and give an example.	(5)	
c) i) State and prove the characterization theorem for split graphs.ii) State and prove the characterization theorem for triangular graphs.[OR]	(10 + 5)	
d)i)Write DFS algorithm and discuss about its efficiency .ii)Discuss about transitive orientation property.	(10+5)	
 V a) Define interval graph and give an example. [OR] b) Define permutation labeling with an example. (5) 		
 c) i) State and prove Tuker's theorem for circular-arc graphs. ii) Prove that every interval graph is a circular-arc graph. (10 + 5) 		
[OR] d) i) Discuss any three applications of interval graphs. ii) State and prove the characterization theorem for interval graphs.	(6 + 9)	

\$\$\$\$\$\$\$