LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - MATHEMATICS

THIRDSEMESTER - APRIL 2018
16PMT3MC04- ALGORITHMIC GRAPH THEORY

Date: 04-05-2018 \square Max. : 100 Marks
Time: 09:00-12:00

ANSWER ALL QUESTIONS

I a) Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group.
[OR]
b) Show that if every vertex of a graph G has degree 2 , then G contains a cycle. (5)
c) i) State and prove Chavatal theorem for hamiltonian graphs.
ii) Prove that a graph is bipartite if and only if it contains no odd cycle. (10+5)
[OR]
d) (i) With usual notations prove that $\alpha^{1}(G)+\beta^{1}(G)=n(G)$.
(ii) Apply Dijkstra's algorithm to find shortest path from u to all other vertices of the following graph.

(5+10)

II a) Write about travelling salesman problem.
[OR]
b) Show that a connected graph has an Euler's trail if and only if it has atmost two vertices of odd degree.
c) i) Show that closure of a graph is well defined
ii)Let G be a simple graph with $v \geq 3$. Prove that if $c(G)$ is complete then G is Hamiltonian.
[OR]
d) i)State and prove Dirac theorem for hamiltonian graphs.
ii)Write about Chinese postman problem.

III a) Show that a tree has atmost one perfect matching.
[OR]
b) Find the number of different perfect matchings in $K_{2 n}$.
c) i) Prove that a matching M in G is a maximum matching iff G contains no $\mathrm{M}-$ augmenting path.
ii) Let M be a matching and K be a covering with $|\mathrm{M}|=|\mathrm{K}|$. Then show that M is a maximum matching and K is a minimum covering. (10+5)
[OR]
d) i) Define split graph and prove that complement of a split graph is a split graph.
ii) State and prove any three properties of a split graph.

$$
(8+7)
$$

IV a) Write BFS algorithm.
[OR]
b) Define permutation graph and give an example.
c) i) State and prove the characterization theorem for split graphs.
ii) State and prove the characterization theorem for triangular graphs. $(10+5)$ [OR]
d)i)Write DFS algorithm and discuss about its efficiency .
ii)Discuss about transitive orientation property.

V a) Define interval graph and give an example.
[OR]
b) Define permutation labeling with an example.
c) i) State and prove Tuker's theorem for circular-arc graphs.
ii) Prove that every interval graph is a circular-arc graph. $(10+5)$
[OR]
d) i) Discuss any three applications of interval graphs.
ii) State and prove the characterization theorem for interval graphs. $(6+9)$

