LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION -MATHEMATICS

FOURTH SEMESTER - APRIL 2018

16PMT4MC01- FUNCTIONAL ANALYSIS

	Date: 18-04-2018 Dept. No. Time: 01:00-04:00	Max. : 100 Marks		
	Answer ALL the questions:			
1.	(a) Define (i) Ray (ii) Hyperplane (iii) Algebraic Dual.	(5)		
	(OR)			
	(b) If X is a vector space, Y and Z are subspaces of X and is complementary to Z , then prove that every			
	element of X/Y contains exactly one element of Z .	(5)		
	(c) (i) Prove that every vector space <i>X</i> contains a set of linearly independent	ndent elements which generates X .		
	(ii) Prove that if $f \in X^*$, then $Z(f)$ has deficiency 0 or 1 in X . Converge	versely, if Z is a subspace of X of		
	deficiency 0 or 1, then there is an $f \in X^*$ such that $Z = Z(f).(7+8)$			
	(OR)			
(d) Let X be a real vector space, let Y be a subspace of X and p be a real valued function o $p(x+y) \le p(x) + p(y)$ and $p(ax) = ap(x)$ for all $x, y \in X$, for $a \ge 0$. If f is a line on Y and $f(x) \le p(x)$ for all $x \in Y$, prove that there is a linear functional F on X such		or $a \ge 0$. If f is a linear functional		
	$f(x)$ for all $x \in Y$ and $F(x) \le p(x)$ for all $x \in X$.	(15)		
2.	(a) Let $B(X,Y)$ be the set of all bounded linear transformation of X into vector space which is Banach space if Y is a Banach space.	o Y. Prove that $B(X,Y)$ is a normed (5)		
	(OR)			
	(b) State and prove F.Rieszlemma.	(5)		
	(c) (i) State and prove Hahn Banach Theorem for a real normed linear space.			
	(ii) Let X be a real normed linear space. Then prove that for any $x \neq 0$ in X there is an $x' \in X'$ such			
	that $x'(x) = x $ and $ x' = 1$.	(10+5)		
	(OR)			
	(d) State and prove Hahn Banach Theorem for a complex normed line	ar space. (15)		
3.	(a) Let <i>X</i> and <i>Y</i> be Banach spaces and let <i>T</i> be a linear transformation of <i>X</i> into <i>Y</i> . Prove that if the graph			
	of <i>T</i> is closed then <i>T</i> is bounded.	(5)		
	(OR)			

(b) Define a dual space. Let X be a normed vector sp	ace and let X' be the dual space of X . If X' is	
separable then prove that X is separable.	(5)	
(c)(i) Mention any two properties of the projection. If P		
and N are its range and null space respectively then prove that M and N are closed linear		
subspaces of X such that $X = M \oplus N$.		
(ii) If M is a direct sum of X and N is a closed	I subspace with $X = M \oplus N$ and with unique	
representation $x = y + z$ where $y \in M$, $z \in N$ then prove that P is a projection where $Px = y$.		
(iii) Show that a Banach space cannot have a countable	y infinite basis. (7+6+3)	
(OR)		
(d) State and prove open mapping theorem.	(15)	
. (a) Let M be a non empty subset of a Hilbert space H . Then prove that M^{\perp} is a closed linear subspace of H .		
	(5)	
(OR)		
(b) Prove that the self adjoint operators in $B(H)$ form a closed real linear subspace of $B(H)$ and		
therefore a real Banach space.	(5)	
(c) State and prove Riesz Fischer theorem.	(15)	
(OR)		
(d) If $P_1, P_2,, P_n$ are the projections on closed linear subspaces $M_1, M_2,, M_n$ of a Hilbert space H ,		
then prove that $P = P_1 + P_2 + \cdots + P_n$ is a projection if and only if P_i 's are pairwise orthogonal.		
Also, show that <i>P</i> is a projection on $M = M_1 + M_2 + \cdots + M_n$.		
	(15)	
. (a) Define a Banach algebra A and prove that the set of regular elements in A is open. (5)		
(OR)		
(b) Let <i>A</i> be Banach algebra. Show that the inverse of the regular element $x \in A$ is $x^{-1} = 1 + \sum_{n=1}^{\infty} (1-x)^n$.		
	(5)	
(c) (i) Define topological divisor of zero in Banach Algebra A. Let Z denote the set of all topological		
divisors of zero in A. Then prove that every zero divisor in A is a topological divisor in A. Also		
prove that G is an open set and therefore S is closed set.	(2+2+3)	
(ii) Prove that the mapping $f: G \to G$ given by $f(x)$	$= x^{-1}$ is continuous and is a homeomorphism.	
	(8)	
(OR)		
(d) State and prove the Spectral theorem.	(15)	
